Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing

被引:257
作者
Xie, Weibo [1 ]
Feng, Qi [2 ]
Yu, Huihui [1 ]
Huang, Xuehui [2 ]
Zhao, Qiang [2 ]
Xing, Yongzhong [1 ]
Yu, Sibin [1 ]
Han, Bin [2 ]
Zhang, Qifa [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Natl Ctr Gene Res, Shanghai 200233, Peoples R China
基金
中国国家自然科学基金;
关键词
genomics; maximum parsimony of recombination; Bayesian inference; hidden Markov model; rice; ELITE RICE HYBRID; GENETIC-BASIS; GENOME; TECHNOLOGY; HETEROSIS; STRAINS; MOUSE;
D O I
10.1073/pnas.1005931107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bar-coded multiplexed sequencing approaches based on new-generation sequencing technologies provide capacity to sequence a mapping population in a single sequencing run. However, such approaches usually generate low-coverage and error-prone sequences for each line in a population. Thus, it is a significant challenge to genotype individual lines in a population for linkage map construction based on low-coverage sequences without the availability of high-quality genotype data of the parental lines. In this paper, we report a method for constructing ultrahigh-density linkage maps composed of high-quality single-nucleotide polymorphisms (SNPs) based on low-coverage sequences of recombinant inbred lines. First, all potential SNPs were identified to obtain drafts of parental genotypes using a maximum parsimonious inference of recombination, making maximum use of SNP information found in the entire population. Second, high-quality SNPs were identified by filtering out low-quality ones by permutations involving resampling of windows of SNPs followed by Bayesian inference. Third, lines in the mapping population were genotyped using the high-quality SNPs assisted by a hidden Markov model. With 0.05x genome sequence per line, an ultrahigh-density linkage map composed of bins of high-quality SNPs using 238 recombinant inbred lines derived from a cross between two rice varieties was constructed. Using this map, a quantitative trait locus for grain width (GW5) was localized to its presumed genomic region in a bin of 200 kb, confirming the accuracy and quality of the map. This method is generally applicable in genetic map construction with low-coverage sequence data.
引用
收藏
页码:10578 / 10583
页数:6
相关论文
共 29 条
[1]   Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers [J].
Baird, Nathan A. ;
Etter, Paul D. ;
Atwood, Tressa S. ;
Currey, Mark C. ;
Shiver, Anthony L. ;
Lewis, Zachary A. ;
Selker, Eric U. ;
Cresko, William A. ;
Johnson, Eric A. .
PLOS ONE, 2008, 3 (10)
[2]   R/qtl: QTL mapping in experimental crosses [J].
Broman, KW ;
Wu, H ;
Sen, S ;
Churchill, GA .
BIOINFORMATICS, 2003, 19 (07) :889-890
[3]   The Genetic Architecture of Maize Flowering Time [J].
Buckler, Edward S. ;
Holland, James B. ;
Bradbury, Peter J. ;
Acharya, Charlotte B. ;
Brown, Patrick J. ;
Browne, Chris ;
Ersoz, Elhan ;
Flint-Garcia, Sherry ;
Garcia, Arturo ;
Glaubitz, Jeffrey C. ;
Goodman, Major M. ;
Harjes, Carlos ;
Guill, Kate ;
Kroon, Dallas E. ;
Larsson, Sara ;
Lepak, Nicholas K. ;
Li, Huihui ;
Mitchell, Sharon E. ;
Pressoir, Gael ;
Peiffer, Jason A. ;
Rosas, Marco Oropeza ;
Rocheford, Torbert R. ;
Cinta Romay, M. ;
Romero, Susan ;
Salvo, Stella ;
Sanchez Villeda, Hector ;
da Silva, H. Sofia ;
Sun, Qi ;
Tian, Feng ;
Upadyayula, Narasimham ;
Ware, Doreen ;
Yates, Heather ;
Yu, Jianming ;
Zhang, Zhiwu ;
Kresovich, Stephen ;
McMullen, Michael D. .
SCIENCE, 2009, 325 (5941) :714-718
[4]   An integrated physical and genetic map of the rice genome [J].
Chen, MS ;
Presting, G ;
Barbazuk, WB ;
Goicoechea, JL ;
Blackmon, B ;
Fang, FC ;
Kim, H ;
Frisch, D ;
Yu, YS ;
Sun, SH ;
Higingbottom, S ;
Phimphilai, J ;
Phimphilai, D ;
Thurmond, S ;
Gaudette, B ;
Li, P ;
Liu, JD ;
Hatfield, J ;
Main, D ;
Farrar, K ;
Henderson, C ;
Barnett, L ;
Costa, R ;
Williams, B ;
Walser, S ;
Atkins, M ;
Hall, C ;
Budiman, MA ;
Tomkins, JP ;
Luo, MZ ;
Bancroft, I ;
Salse, J ;
Regad, F ;
Mohapatra, T ;
Singh, NK ;
Tyagi, AK ;
Soderlund, C ;
Dean, RA ;
Wing, RA .
PLANT CELL, 2002, 14 (03) :537-545
[5]  
Craig DW, 2008, NAT METHODS, V5, P887, DOI [10.1038/nmeth.1251, 10.1038/NMETH.1251]
[6]   Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology [J].
Cronn, Richard ;
Liston, Aaron ;
Parks, Matthew ;
Gernandt, David S. ;
Shen, Rongkun ;
Mockler, Todd .
NUCLEIC ACIDS RESEARCH, 2008, 36 (19)
[7]   What is a hidden Markov model? [J].
Eddy, SR .
NATURE BIOTECHNOLOGY, 2004, 22 (10) :1315-1316
[8]   Base-calling of automated sequencer traces using phred.: II.: Error probabilities [J].
Ewing, B ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :186-194
[9]   Strategies for mapping and cloning quantitative trait genes in rodents [J].
Flint, J ;
Valdar, W ;
Shifman, S ;
Mott, R .
NATURE REVIEWS GENETICS, 2005, 6 (04) :271-286
[10]   A sequence-based variation map of 8.27 million SNPs in inbred mouse strains [J].
Frazer, Kelly A. ;
Eskin, Eleazar ;
Kang, Hyun Min ;
Bogue, Molly A. ;
Hinds, David A. ;
Beilharz, Erica J. ;
Gupta, Robert V. ;
Montgomery, Julie ;
Morenzoni, Matt M. ;
Nilsen, Geoffrey B. ;
Pethiyagoda, Charit L. ;
Stuve, Laura L. ;
Johnson, Frank M. ;
Daly, Mark J. ;
Wade, Claire M. ;
Cox, David R. .
NATURE, 2007, 448 (7157) :1050-U8