Efficient quantum algorithms for simulating sparse Hamiltonians

被引:503
作者
Berry, Dominic W. [1 ]
Ahokas, Graeme
Cleve, Richard
Sanders, Barry C.
机构
[1] Univ Queensland, Dept Phys, St Lucia, Qld 4072, Australia
[2] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[3] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[4] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[6] Macquarie Univ, Ctr Quantum Comp Technol, Sydney, NSW 2109, Australia
关键词
MANY-BODY THEORIES;
D O I
10.1007/s00220-006-0150-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and parallel to H parallel to is bounded by a constant, we may select any positive integer k such that the simulation requires O((log* n) t(1+1/2k)) accesses to matrix entries of H. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.
引用
收藏
页码:359 / 371
页数:13
相关论文
共 21 条
[1]  
AHOKAS G, 2004, THESIS U CALGARY
[2]   Quantum walk algorithm for element distinctness [J].
Ambainis, A .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :22-31
[3]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[4]  
[Anonymous], 2003, P 35 ANN ACM S THEOR, DOI DOI 10.1145/780542.780546
[5]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
De Wolf, R .
JOURNAL OF THE ACM, 2001, 48 (04) :778-797
[6]  
Childs A. M., 2004, Ph.D. thesis
[7]  
Childs A M., 2003, P 35 ANN ACM S THEOR, ppp 59, DOI [10.1145/780542.780552, DOI 10.1145/780542.780552]
[8]   Spatial search by quantum walk [J].
Childs, AM ;
Goldstone, J .
PHYSICAL REVIEW A, 2004, 70 (02) :022314-1
[9]   An Example of the Difference Between Quantum and Classical Random Walks [J].
Childs, Andrew M. ;
Farhi, Edward ;
Gutmann, Sam .
QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) :35-43
[10]   DETERMINISTIC COIN TOSSING WITH APPLICATIONS TO OPTIMAL PARALLEL LIST RANKING [J].
COLE, R ;
VISHKIN, U .
INFORMATION AND CONTROL, 1986, 70 (01) :32-53