Efficient quantum algorithms for simulating sparse Hamiltonians

被引:503
作者
Berry, Dominic W. [1 ]
Ahokas, Graeme
Cleve, Richard
Sanders, Barry C.
机构
[1] Univ Queensland, Dept Phys, St Lucia, Qld 4072, Australia
[2] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[3] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[4] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[6] Macquarie Univ, Ctr Quantum Comp Technol, Sydney, NSW 2109, Australia
关键词
MANY-BODY THEORIES;
D O I
10.1007/s00220-006-0150-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and parallel to H parallel to is bounded by a constant, we may select any positive integer k such that the simulation requires O((log* n) t(1+1/2k)) accesses to matrix entries of H. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.
引用
收藏
页码:359 / 371
页数:13
相关论文
共 21 条
[11]   Limit on the speed of quantum computation in determining parity [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Sipser, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5442-5444
[12]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[13]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[14]   The complexity of the local Hamiltonian problem [J].
Kempe, J ;
Kitaev, A ;
Regev, O .
SIAM JOURNAL ON COMPUTING, 2006, 35 (05) :1070-1097
[15]   LOCALITY IN DISTRIBUTED GRAPH ALGORITHMS [J].
LINIAL, N .
SIAM JOURNAL ON COMPUTING, 1992, 21 (01) :193-201
[16]   Universal quantum simulators [J].
Lloyd, S .
SCIENCE, 1996, 273 (5278) :1073-1078
[17]  
Nielsen M. A., 2000, Quantum Computation and Quantum Information
[18]   Quantum random-walk search algorithm [J].
Shenvi, N ;
Kempe, J ;
Whaley, KB .
PHYSICAL REVIEW A, 2003, 67 (05)
[19]  
SHOR PW, 1994, AN S FDN CO, P124
[20]   GENERAL-THEORY OF FRACTAL PATH-INTEGRALS WITH APPLICATIONS TO MANY-BODY THEORIES AND STATISTICAL PHYSICS [J].
SUZUKI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :400-407