Remodeling Chromatin and Stress Resistance in the Central Nervous System: Histone Deacetylase Inhibitors as Novel and Broadly Effective Neuroprotective Agents

被引:138
作者
Langley, Brett [1 ,2 ]
Gensert, Joann M. [1 ,2 ]
Beal, M. Flint [2 ]
Ratan, Rajiv R. [1 ,2 ]
机构
[1] Burke Med Res Inst, White Plains, NY 10605 USA
[2] Cornell Univ, Weill Med Coll, Dept Neurol & Neurosci, New York, NY 10021 USA
关键词
Histone deacetylase (HDAC) inhibitors; neuroprotection; apoptosis; neuron(s);
D O I
10.2174/1568007053005091
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Acetylation and deacetylation of histone protein plays a critical role in regulating gene expression in a host of biological processes including cellular proliferation, development, and differentiation. Accordingly, aberrant acetylation and deacetylation resulting from the misregulation of histone acetyltransferases (HATs) and/or histone deacetylases (HDACs) has been linked to clinical disorders such as Rubinstein-Taybi syndrome, fragile X syndrome, leukemia, and various cancers. Of significant import has been the development of small molecule HDAC inhibitors that permit pharmacological manipulation of histone acetylation levels and treatment of some of these diseases including cancer. In this Review we discuss evidence that aberrant HAT and HDAC activity may also be a common underlying mechanism contributing to neurodegeneration during acute and chronic neurological diseases, including stroke, Huntington's disease Amyotrophic Lateral Sclerosis and Alzheimer's disease. With this in mind, a number of studies examining the use of HDAC inhibitors as therapy for restoring histone acetylation and transcriptional activation in in vitro and in vivo neurodegenerative models are discussed. These studies demonstrate that pharmacological HDAC inhibition is a promising therapeutic approach for the treatment of a range of central nervous system disorders.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 157 条
[1]   Histone acetylation and cancer [J].
Archer, SY ;
Hodin, RA .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (02) :171-174
[2]   Apoptosis inhibitory activity of cytoplasmic p21Cip1/WAF1 in monocytic differentiation [J].
Asada, M ;
Yamada, T ;
Ichijo, H ;
Delia, D ;
Miyazono, K ;
Fukumuro, K ;
Mizutani, S .
EMBO JOURNAL, 1999, 18 (05) :1223-1234
[3]   Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease [J].
Auluck, PK ;
Chan, HYE ;
Trojanowski, JQ ;
Lee, VMY ;
Bonini, NM .
SCIENCE, 2002, 295 (5556) :865-868
[4]  
BEAL MF, 1993, J NEUROSCI, V13, P4181
[5]  
Beal MF, 2003, ANN NY ACAD SCI, V991, P120
[6]  
Blagosklonny MV, 2002, MOL CANCER THER, V1, P937
[7]   Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease [J].
Bogdanov, MB ;
Andreassen, OA ;
Dedeoglu, A ;
Ferrante, RJ ;
Beal, MF .
JOURNAL OF NEUROCHEMISTRY, 2001, 79 (06) :1246-1249
[8]   Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis [J].
Boutillier, AL ;
Trinh, E ;
Loeffler, JP .
JOURNAL OF NEUROCHEMISTRY, 2003, 84 (04) :814-828
[9]   Regulation of activity of the transcription factor GATA-1 by acetylation [J].
Boyes, J ;
Byfield, P ;
Nakatani, Y ;
Ogryzko, V .
NATURE, 1998, 396 (6711) :594-598
[10]   Retinoblastoma protein recruits histone deacetylase to repress transcription [J].
Brehm, A ;
Miska, EA ;
McCance, DJ ;
Reid, JL ;
Bannister, AJ ;
Kouzarides, T .
NATURE, 1998, 391 (6667) :597-601