Thermal transport in nanofluids

被引:721
作者
Eastman, JA
Phillpot, SR
Choi, SUS
Keblinski, P
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[3] Argonne Natl Lab, Energy Technol Div, Argonne, IL 60439 USA
[4] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
关键词
heat transfer; thermal conductivity; nanoparticles; nanocomposites; Kapitza resistance;
D O I
10.1146/annurev.matsci.34.052803.090621
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanofluids, consisting of nanometer-sized solid particles and fibers dispersed in liquids, have recently been demonstrated to have great potential for improving the heat transfer properties of liquids. Several characteristic behaviors of nanofluids have been identified, including the possibility of obtaining large increases in thermal conductivity compared with liquids without nanoparticles, strong temperature-dependent effects, and significant increases in critical heat flux. Observed behavior is in many cases anomalous with respect to the predictions of existing macroscopic theories, indicating the need for a new theory that properly accounts for the unique features of nanofluids. Theoretical studies of the possible heat transfer mechanisms have been initiated, but to date obtaining an atomic- and microscale-level understanding of how heat is transferred in nanofluids remains the greatest challenge that must be overcome in order to realize the full potential of this new class of heat transfer fluids.
引用
收藏
页码:219 / 246
页数:28
相关论文
共 67 条
[21]   Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films [J].
Hone, J ;
Llaguno, MC ;
Nemes, NM ;
Johnson, AT ;
Fischer, JE ;
Walters, DA ;
Casavant, MJ ;
Schmidt, J ;
Smalley, RE .
APPLIED PHYSICS LETTERS, 2000, 77 (05) :666-668
[22]   Thermal conductivity of single-walled carbon nanotubes [J].
Hone, J ;
Whitney, M ;
Piskoti, C ;
Zettl, A .
PHYSICAL REVIEW B, 1999, 59 (04) :R2514-R2516
[23]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734
[24]   TRANSIENT BALLISTIC AND DIFFUSIVE PHONON HEAT-TRANSPORT IN THIN-FILMS [J].
JOSHI, AA ;
MAJUMDAR, A .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (01) :31-39
[25]   Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J].
Keblinski, P ;
Phillpot, SR ;
Choi, SUS ;
Eastman, JA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (04) :855-863
[26]   Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids [J].
Khanafer, K ;
Vafai, K ;
Lightstone, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (19) :3639-3653
[27]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[28]   Measuring thermal conductivity of fluids containing oxide nanoparticles [J].
Lee, S ;
Choi, SUS ;
Li, S ;
Eastman, JA .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :280-289
[29]  
LEE S, 1996, RECENT ADV SOLIDS ST, P227
[30]   THEORY OF HEAT-TRANSFER BY EVANESCENT ELECTROMAGNETIC-WAVES [J].
LOOMIS, JJ ;
MARIS, HJ .
PHYSICAL REVIEW B, 1994, 50 (24) :18517-18524