(110)-surface strained-SOI CMOS devices

被引:69
作者
Mizuno, T [1 ]
Sugiyama, N
Tezuka, T
Moriyama, Y
Nakaharai, S
Takagi, S
机构
[1] AIST, MIRAI, Kawasaki, Kanagawa 2128582, Japan
[2] Kanagawa Univ, Hiratsuka, Kanagawa 2591293, Japan
[3] Toshiba Res & Dev Ctr, Kawasaki, Kanagawa 2128582, Japan
[4] Univ Tokyo, Tokyo 1138656, Japan
关键词
anisotropic effective mass; CMOS; mobility; strained-silicon-on-insulator (SOI); (110)-surface;
D O I
10.1109/TED.2005.843894
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have newly developed (110)-surface strained-silicon-on-insulator (SOI) n- and p-MOSFETs on (110)-surface relaxed-SiGe-on-insulator substrates with the Ge content of 25%, fabricated by applying the Ge condensation technique to SiGe layers grown on (110)-surface SOI wafers. We have demonstrated that the electron and the hole mobility enhancement of (110)-surface strained-SOI devices amounts to 23% and 50%, respectively, against the mobilities of (110)-surface unstrained MOSFETs. As a result, the electron and the hole mobility ratios of (110)-surface strained-SOI MOSFETs to the universal mobility of (100)-surface bulk-MOSFETs increase up to 81% and 203%, respectively. Therefore, the current drive imbalance between n- and p-MOS can be reduced. Moreover, both the electron and the hole mobilities of the (110)-surface strained-SOIs strongly depend on the drain current flow direction, which is qualitatively explained by the anisotropic effective mass characteristics of the carriers on a (110)-surface Si. As a result, the (110)-surface strained-SOI technology with optimization of the current flow directions of nand p-MOS is promising for realizing higher speed scaled CMOS.
引用
收藏
页码:367 / 374
页数:8
相关论文
共 19 条
[1]   SURFONS AND ELECTRON-MOBILITY IN SILICON INVERSION LAYERS [J].
EZAWA, H ;
KAWAJI, S ;
NAKAMURA, K .
JAPANESE JOURNAL OF APPLIED PHYSICS, 1974, 13 (01) :126-155
[2]   Six-band k•p calculation of the hole mobility in silicon inversion layers:: Dependence on surface orientation, strain, and silicon thickness [J].
Fischetti, MV ;
Ren, Z ;
Solomon, PM ;
Yang, M ;
Rim, K .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (02) :1079-1095
[3]  
KINUGAWA M, 1986, S VLSI, P17
[4]   High-performance strained-SOI CMOS devices using thin film SiGe-on-insulator technology [J].
Mizuno, T ;
Sugiyama, N ;
Tezuka, T ;
Numata, T ;
Takagi, S .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (04) :988-994
[5]   (110)strained-SOI n-MOSFETs with higher electron mobility [J].
Mizuno, T ;
Sugiyama, N ;
Tezuka, T ;
Takagi, S .
IEEE ELECTRON DEVICE LETTERS, 2003, 24 (04) :266-268
[6]  
Mizuno T, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P31, DOI 10.1109/IEDM.2002.1175772
[7]  
MIZUNO T, 2003, IEDM, P809
[8]  
MIZUNO T, 2003, S VLSI, P97
[9]   110 GHz cutoff frequency of ultra-thin gate oxide p-MOSFETs on (110) surface-oriented Si substrate [J].
Momose, HS ;
Ohguro, T ;
Kojima, K ;
Nakamura, S ;
Toyoshima, Y .
2002 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2002, :156-157
[10]   LOW-FIELD HOLE MOBILITY OF STRAINED SI ON (100) SI1-XGEX SUBSTRATE [J].
NAYAK, DK ;
CHUN, SK .
APPLIED PHYSICS LETTERS, 1994, 64 (19) :2514-2516