Multivariate empirical mode decomposition

被引:836
作者
Rehman, N. [1 ]
Mandic, D. P. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2010年 / 466卷 / 2117期
关键词
multivariate signal analysis; empirical mode decomposition; intrinsic mode functions; multiscale analysis; inertial body sensors; human motion analysis;
D O I
10.1098/rspa.2009.0502
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite empirical mode decomposition (EMD) becoming a de facto standard for time-frequency analysis of nonlinear and non-stationary signals, its multivariate extensions are only emerging; yet, they are a prerequisite for direct multichannel data analysis. An important step in this direction is the computation of the local mean, as the concept of local extrema is not well defined for multivariate signals. To this end, we propose to use real-valued projections along multiple directions on hyperspheres (n-spheres) in order to calculate the envelopes and the local mean of multivariate signals, leading to multivariate extension of EMD. To generate a suitable set of direction vectors, unit hyperspheres (n-spheres) are sampled based on both uniform angular sampling methods and quasi-Monte Carlo-based low-discrepancy sequences. The potential of the proposed algorithm to find common oscillatory modes within multivariate data is demonstrated by simulations performed on both hexavariate synthetic and real-world human motion signals.
引用
收藏
页码:1291 / 1302
页数:12
相关论文
共 20 条
  • [11] Empirical mode decomposition and correlation properties of long daily ozone records -: art. no. 056126
    Jánosi, IM
    Müller, R
    [J]. PHYSICAL REVIEW E, 2005, 71 (05):
  • [12] Data analysis using a combination of independent component analysis and empirical mode decomposition
    Lin, Shih-Lin
    Tung, Pi-Cheng
    Huang, Norden E.
    [J]. PHYSICAL REVIEW E, 2009, 79 (06):
  • [13] Multiscale Image Fusion Using Complex Extensions of EMD
    Looney, David
    Mandic, Danilo P.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (04) : 1626 - 1630
  • [14] Mandic D.P., 2009, Complex valued nonlinear adaptive filters: Noncircularity, widely linear and neural models
  • [15] Niederreiter H., 1992, RANDOM NUMBER GENERA
  • [16] Rehman N., IEEE T SIGN IN PRESS
  • [17] One or two frequencies? The empirical mode decomposition answers
    Rilling, Gabriel
    Flandrin, Patrick
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) : 85 - 95
  • [18] Bivariate empirical mode decomposition
    Rilling, Gabriel
    Flandrin, Patrick
    Goncalves, Paulo
    Lilly, Jonathan M.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (12) : 936 - 939
  • [19] Complex empirical mode decomposition
    Tanaka, Toshihisa
    Mandic, Danilo P.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (02) : 101 - 104
  • [20] Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization
    Wu, Ming-Chya
    Hu, Chin-Kun
    [J]. PHYSICAL REVIEW E, 2006, 73 (05):