Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets

被引:93
作者
Chow, Lesley W. [1 ]
Wang, Ling-jia [2 ]
Kaufman, Dixon B. [3 ,4 ]
Stupp, Samuel I. [1 ,3 ,4 ,5 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Feinberg Sch Med, Dept Surg, Div Organ Transplantat, Chicago, IL 60611 USA
[3] Northwestern Univ, Feinberg Sch Med, Inst BioNanotechnol Med, Chicago, IL 60611 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Northwestern Univ, Feinberg Sch Med, Dept Med, Chicago, IL 60611 USA
基金
美国国家卫生研究院;
关键词
Angiogenesis; Cell viability; Diabetes; Heparin; Peptide; Self-assembly; PEPTIDE-AMPHIPHILE NANOFIBERS; EXTRACELLULAR-MATRIX; CELL; GROWTH; REVASCULARIZATION; SCAFFOLD; PROMOTE; REESTABLISHMENT; BIOMATERIALS; STIMULATORS;
D O I
10.1016/j.biomaterials.2010.04.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Supramolecular self-assembly of nanoscale filaments offers a vehicle to signal cells within dense cell aggregates such as pancreatic islets. We previously developed a heparin-binding peptide amphiphile (HBPA) that self-assembles into nanofiber gels at concentrations of 1% by weight when mixed with heparin and activates heparin-binding, angiogenic growth factors. We report here on the use of these molecules at concentrations 100 times lower to drive delivery of the nanofibers into the dense islet interior. Using fluorescent markers. HBPA molecules, heparin, and FGF2 were shown to be present in and on the surface of murine islets. The intraislet nanofibers were found to be necessary to retain FGF2 within the islet for 48 h and to increase cell viability significantly for at least 7 days in culture. Furthermore, enhanced insulin secretion was observed with the nanofibers for 3 days in culture. Delivery of FGF2 and VEGF in conjunction with the HBPA/heparin nanofibers also induced a significant amount of islet endothelial cell sprouting from the islets into a peptide amphiphile 3-D matrix. We believe the infiltration of bioactive nanofibers in the interior of islets as an artificial ECM can improve cell viability and function in vitro and enhance their vascularization in the presence of growth factors such as FGF2 and VEGF. The approach described here may have significant impact on islet transplantation to treat type 1 diabetes. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6154 / 6161
页数:8
相关论文
共 48 条
[31]   Medical progress: Islet transplantation as a treatment for diabetes - A work in progress [J].
Robertson, RP .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (07) :694-705
[32]   Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation [J].
Salvay, David M. ;
Rives, Christopher B. ;
Zhang, Xiaomin ;
Chen, Fei ;
Kaufman, Dixon B. ;
Lowe, William L., Jr. ;
Shea, Lonnie D. .
TRANSPLANTATION, 2008, 85 (10) :1456-1464
[33]   Titanium foam-bioactive nanofiber hybrids for bone regeneration [J].
Sargeant, Timothy D. ;
Oppenheimer, Scott M. ;
Dunand, David C. ;
Stupp, Samuel I. .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 2 (08) :455-462
[34]   Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers [J].
Sargeant, Timothy D. ;
Rao, Mukti S. ;
Koh, Chung-Yan ;
Stupp, Samuel I. .
BIOMATERIALS, 2008, 29 (08) :1085-1098
[35]   Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium [J].
Sargeant, Timothy D. ;
Guler, Mustafa O. ;
Oppenheimer, Scott M. ;
Mata, Alvaro ;
Satcher, Robert L. ;
Dunand, David C. ;
Stupp, Samuel I. .
BIOMATERIALS, 2008, 29 (02) :161-171
[36]   International trial of the edmonton protocol for islet transplantation [J].
Shapiro, A. M. James ;
Ricordi, Camillo ;
Hering, Bernhard J. ;
Auchincloss, Hugh ;
Lindblad, Robert ;
Robertson, Paul ;
Secchi, Antonio ;
Brendel, Mathias D. ;
Berney, Thierry ;
Brennan, Daniel C. ;
Cagliero, Enrico ;
Alejandro, Rodolfo ;
Ryan, Edmond A. ;
DiMercurio, Barbara ;
Morel, Philippe ;
Polonsky, Kenneth S. ;
Reems, Jo-Anna ;
Bretzel, Reinhard G. ;
Bertuzzi, Federico ;
Froud, Tatiana ;
Kandaswamy, Raja ;
Sutherland, David E. R. ;
Eisenbarth, George ;
Segal, Miriam ;
Preiksaitis, Jutta ;
Korbutt, Gregory S. ;
Barton, Franca B. ;
Viviano, Lisa ;
Seyfert-Margolis, Vicki ;
Bluestone, Jeffrey ;
Lakey, Jonathan R. T. .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 355 (13) :1318-1330
[37]  
Silva GA, 2004, SCIENCE, V303, P1352, DOI 10.1126/science.1093783
[38]   A bioactive titanium foam scaffold for bone repair [J].
Spoerke, ED ;
Murray, NG ;
Li, HL ;
Brinson, LC ;
Dunand, DC ;
Stupp, SI .
ACTA BIOMATERIALIA, 2005, 1 (05) :523-533
[39]   Enzyme Directed Templating of Artificial Bone Mineral [J].
Spoerke, Erik D. ;
Anthony, Shown G. ;
Stupp, Samuel I. .
ADVANCED MATERIALS, 2009, 21 (04) :425-+
[40]   Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation [J].
Stendahl, John C. ;
Wang, Ling-Jia ;
Chow, Lesley W. ;
Kaufman, Dixon B. ;
Stupp, Samuel I. .
TRANSPLANTATION, 2008, 86 (03) :478-481