Effect of nickel thickness and microwave power on the growth of carbon nanotubes by microwave-heated chemical vapor deposition

被引:15
作者
Huang, JH [1 ]
Chuang, CC
Tsai, CH
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Ctr Mat Sci, Hsinchu 300, Taiwan
[2] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu, Taiwan
关键词
D O I
10.1016/S0167-9317(03)00018-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of Ni thickness and microwave power on the growth of carbon nanotubes (CNTs) by microwave-heated chemical vapor deposition is reported. A 5-100-nm-thick nickel layer was deposited with an e-gun in a vacuum of 10(-6) Torr. It was found that the diameter and length of CNTs increase with Ni layer thickness. The emission I-V curves clearly show two groups of characteristics marked off at the Ni thickness of 50 nm. The low field emission for those films grown on nickel thickness below 50 run is consistent with the carbonaceous particles and carbon overlayers observed using SEM. The microwave power that determines the substrate temperature also affects the morphology and emission property of CNT films. A CNT film grown on 80-nm-thick Ni layer at 900 W for 18 min has shown excellent emission characteristics with very low turn-on field of 0.056 V/mum and a high current density of 160 mA/cm(2) at 4.5 V/mum, which is comparable to the best field emission samples ever reported. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 20 条
[1]   Field emission from carbon nanotubes:: the first five years [J].
Bonard, JM ;
Kind, H ;
Stöckli, T ;
Nilsson, LA .
SOLID-STATE ELECTRONICS, 2001, 45 (06) :893-914
[2]   Field emission from single-wall carbon nanotube films [J].
Bonard, JM ;
Salvetat, JP ;
Stockli, T ;
de Heer, WA ;
Forro, L ;
Chatelain, A .
APPLIED PHYSICS LETTERS, 1998, 73 (07) :918-920
[3]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[4]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[5]  
HUANG JH, 2002, IVMC IFES, V1
[6]   Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes [J].
Huang, ZP ;
Wang, DZ ;
Wen, JG ;
Sennett, M ;
Gibson, H ;
Ren, ZF .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (03) :387-391
[7]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[8]   Microwave-assisted chemical vapor deposition process for synthesizing carbon nanotubes [J].
Kuo, TF ;
Juang, ZY ;
Tsai, CH ;
Tsau, YM ;
Cheng, HF ;
Lin, IN .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (03) :1030-1033
[9]   Growth and field electron emission of vertically aligned multiwalled carbon nanotubes [J].
Lee, CJ ;
Park, J ;
Kang, SY ;
Lee, JH .
CHEMICAL PHYSICS LETTERS, 2000, 326 (1-2) :175-180
[10]   Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor [J].
Li, WZ ;
Zhang, H ;
Wang, CY ;
Zhang, Y ;
Xu, LW ;
Zhu, K ;
Xie, SS .
APPLIED PHYSICS LETTERS, 1997, 70 (20) :2684-2686