Computer aided diagnosis system for the Alzheimer's disease based on least squares and random forest SPECT image classification

被引:91
作者
Ramirez, J. [1 ]
Gorriz, J. M. [1 ]
Segovia, F. [1 ]
Chaves, R. [1 ]
Salas-Gonzalez, D. [1 ]
Lopez, M. [1 ]
Alvarez, I. [1 ]
Padilla, P. [1 ]
机构
[1] Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain
关键词
Alzheimer disease; SPECT; Random forest; Partial least squares; FDG-PET; EMISSION-TOMOGRAPHY; SELECTION; DEMENTIA;
D O I
10.1016/j.neulet.2010.01.056
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This letter shows a computer aided diagnosis (CAD) technique for the early detection of the Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The proposed method is based on partial least squares (PLS) regression model and a random forest (RF) predictor. The challenge of the curse of dimensionality is addressed by reducing the large dimensionality of the input data by downscaling the SPECT images and extracting score features using PLS. A RF predictor then forms an ensemble of classification and regression tree (CART)-like classifiers being its output determined by a majority vote of the trees in the forest. A baseline principal component analysis (PCA) system is also developed for reference. The experimental results show that the combined PLS-RF system yields a generalization error that converges to a limit when increasing the number of trees in the forest. Thus, the generalization error is reduced when using PLS and depends on the strength of the individual trees in the forest and the correlation between them. Moreover, PLS feature extraction is found to be more effective for extracting discriminative information from the data than PCA yielding peak sensitivity, specificity and accuracy values of 100%, 92.7%, and 96.9%, respectively. Moreover, the proposed CAD system outperformed several other recently developed AD CAD systems. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 21 条
[1]   Alzheimer's diagnosis using eigenbrains and support vector machines [J].
Alvarez, I. ;
Gorriz, J. M. ;
Ramirez, J. ;
Salas-Gonzalez, D. ;
Lopez, M. ;
Puntonet, C. G. ;
Segovia, F. .
ELECTRONICS LETTERS, 2009, 45 (07) :342-342
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting [J].
Chaves, R. ;
Ramirez, J. ;
Gorriz, J. M. ;
Lopez, M. ;
Salas-Gonzalez, D. ;
Alvarez, I. ;
Segovia, F. .
NEUROSCIENCE LETTERS, 2009, 461 (03) :293-297
[4]  
Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P10, DOI 10.1016/B978-012372560-8/50002-4
[5]   Automatic selection of ROIs in functional imaging using Gaussian mixture models [J].
Gorriz, J. M. ;
Lassl, A. ;
Ramirez, J. ;
Salas-Gonzalez, D. ;
Puntonet, C. G. ;
Lang, E. W. .
NEUROSCIENCE LETTERS, 2009, 460 (02) :108-111
[6]   A comparison of classification methods for differentiating fronto-temporal dementia from Alzheimer's disease using FDG-PET imaging [J].
Higdon, R ;
Foster, NL ;
Koeppe, RA ;
DeCarli, CS ;
Jagust, WJ ;
Clark, CM ;
Barbas, NR ;
Arnold, SE ;
Turner, RS ;
Heidebrink, JL ;
Minoshima, S .
STATISTICS IN MEDICINE, 2004, 23 (02) :315-326
[7]  
Hoffman JM, 2000, J NUCL MED, V41, P1920
[8]   Fully automatic diagnostic system for early- and late-onset mild Alzheimer's disease using FDG PET and 3D-SSP [J].
Ishii, K ;
Kono, AK ;
Sasaki, H ;
Miyamoto, N ;
Fukuda, T ;
Sakamoto, S ;
Mori, E .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2006, 33 (05) :575-583
[9]   Automatic tool for Alzheimer's disease diagnosis using PCA and Bayesian classification rules [J].
Lopez, M. ;
Ramirez, J. ;
Gorriz, J. M. ;
Salas-Gonzalez, D. ;
Alvarez, I. ;
Segovia, F. ;
Puntonet, C. G. .
ELECTRONICS LETTERS, 2009, 45 (08) :389-390
[10]   SVM-based CAD system for early detection of the Alzheimer's disease using kernel PCA and LDA [J].
Lopez, M. M. ;
Ramirez, J. ;
Gorriz, J. M. ;
Alvarez, I. ;
Salas-Gonzalez, D. ;
Segovia, F. ;
Chaves, R. .
NEUROSCIENCE LETTERS, 2009, 464 (03) :233-238