Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures

被引:73
作者
Fujikake, So [1 ,2 ,3 ]
Deringer, Volker L. [1 ,4 ]
Lee, Tae Hoon [4 ]
Krynski, Marcin [4 ]
Elliott, Stephen R. [4 ]
Csanyi, Gabor [1 ]
机构
[1] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
[2] Ecole Ponts ParisTech, F-77455 Marne La Vallee 2, France
[3] Univ Tokyo, Dept Mat Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[4] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
基金
英国工程与自然科学研究理事会;
关键词
REACTIVE FORCE-FIELD; MOLECULAR-DYNAMICS; CATHODE MATERIALS; DIFFUSION; LI; GRAPHENE; STORAGE; 1ST-PRINCIPLES; CRYSTALLIZATION; SIMULATIONS;
D O I
10.1063/1.5016317
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite, and disordered carbon nanostructures, based on reference density functional theory data. Rather than treating the full Li-C system, we demonstrate how the energy and force differences arising from Li intercalation can be modeled and then added to a (prexisting and unmodified) GAP model of pure elemental carbon. Furthermore, we show the benefit of using an explicit pair potential fit to capture "effective" Li-Li interactions and to improve the performance of the GAP model. This provides proof-of-concept for modeling guest atoms in host frameworks with machine-learning based potentials and in the longer run is promising for carrying out detailed atomistic studies of battery materials. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 75 条
  • [1] An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
    Artrith, Nongnuch
    Urban, Alexander
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 : 135 - 150
  • [2] High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
    Artrith, Nongnuch
    Morawietz, Tobias
    Behler, Joerg
    [J]. PHYSICAL REVIEW B, 2011, 83 (15):
  • [3] Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
    Balke, N.
    Jesse, S.
    Morozovska, A. N.
    Eliseev, E.
    Chung, D. W.
    Kim, Y.
    Adamczyk, L.
    Garcia, R. E.
    Dudney, N.
    Kalinin, S. V.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 749 - 754
  • [4] Gaussian approximation potentials: A brief tutorial introduction
    Bartok, Albert P.
    Csanyi, Gabor
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) : 1051 - 1057
  • [5] Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water
    Bartok, Albert P.
    Gillan, Michael J.
    Manby, Frederick R.
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 88 (05)
  • [6] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [7] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [8] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [9] Perspective: Machine learning potentials for atomistic simulations
    Behler, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
  • [10] Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential
    Behler, Joerg
    Martonak, Roman
    Donadio, Davide
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (18)