The grand-canonical asymmetric exclusion process and the one-transit walk

被引:18
作者
Blythe, RA [1 ]
Janke, W
Johnston, DA
Kenna, R
机构
[1] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Leipzig, Inst Theoret Phys, D-04109 Leipzig, Germany
[3] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Coventry Univ, Sch Math & Informat Sci, Coventry CV1 5FB, W Midlands, England
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2004年
基金
英国工程与自然科学研究理事会;
关键词
driven diffusive systems (theory);
D O I
10.1088/1742-5468/2004/06/P06001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The one-dimensional asymmetric exclusion process (ASEP) is a paradigm for nonequilibrium dynamics, in particular driven diffusive processes. It is usually considered in a canonical ensemble in which the number of sites is fixed. We observe that the grand-canonical partition function for the ASEP is remarkably simple. It allows a simple direct derivation of the asymptotics of the canonical normalization in various phases and of the correspondence with one-transit walks recently observed by Brak et al.
引用
收藏
页数:10
相关论文
共 16 条
[1]   Yang-Lee theory for a nonequilibrium phase transition [J].
Arndt, PF .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :814-817
[2]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[3]   The Lee-Yang theory of equilibrium and nonequilibrium phase transitions [J].
Blythe, RA ;
Evans, MR .
BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (03) :464-475
[4]   Lee-Yang zeros and phase transitions in nonequilibrium steady states [J].
Blythe, RA ;
Evans, MR .
PHYSICAL REVIEW LETTERS, 2002, 89 (08) :080601/1-080601/4
[5]   Entropy-driven pumping in zeolites and biological channels [J].
Chou, T ;
Lohse, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (17) :3552-3555
[6]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329
[7]   Exact stationary state for an asymmetric exclusion process with fully parallel dynamics [J].
de Gier, J ;
Nienhuis, B .
PHYSICAL REVIEW E, 1999, 59 (05) :4899-4911
[8]   The asymmetric exclusion process and Brownian excursions [J].
Derrida, B ;
Enaud, C ;
Lebowitz, JL .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) :365-382
[9]   Exact free energy functional for a driven diffusive open stationary nonequilibrium system [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
PHYSICAL REVIEW LETTERS, 2002, 89 (03) :306011-306014
[10]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517