Lee-Yang zeros and phase transitions in nonequilibrium steady states

被引:67
作者
Blythe, RA [1 ]
Evans, MR
机构
[1] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.89.080601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider how the Lee-Yang description of phase transitions in terms of partition function zeros applies to nonequilibrium systems. Here, one does not have a partition function; instead we consider the zeros of a steady-state normalization factor in the complex plane of the transition rates. We obtain the exact distribution of zeros in the thermodynamic limit for a specific model, the boundary-driven asymmetric simple exclusion process. We show that the distributions of zeros at the first- and the second-order nonequilibrium phase transitions of this model follow the patterns known in the Lee-Yang equilibrium theory.
引用
收藏
页码:080601/1 / 080601/4
页数:4
相关论文
共 25 条
[1]   Yang-Lee theory for a nonequilibrium phase transition [J].
Arndt, PF .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :814-817
[2]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[3]   Entropy-driven pumping in zeolites and biological channels [J].
Chou, T ;
Lohse, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (17) :3552-3555
[4]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329
[5]   Yang-Lee zeros for a nonequilibrium phase transition [J].
Dammer, SM ;
Dahmen, SR ;
Hinrichsen, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (21) :4527-4539
[6]   THE ZEROS OF THE PARTITION-FUNCTION OF THE RANDOM ENERGY-MODEL [J].
DERRIDA, B .
PHYSICA A, 1991, 177 (1-3) :31-37
[7]   Exact free energy functional for a driven diffusive open stationary nonequilibrium system [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
PHYSICAL REVIEW LETTERS, 2002, 89 (03) :306011-306014
[8]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[9]   SPONTANEOUS SYMMETRY-BREAKING IN A ONE-DIMENSIONAL DRIVEN DIFFUSIVE SYSTEM [J].
EVANS, MR ;
FOSTER, DP ;
GODRECHE, C ;
MUKAMEL, D .
PHYSICAL REVIEW LETTERS, 1995, 74 (02) :208-211
[10]  
EVANS MR, IN PRESS PHYSICA