Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion

被引:394
作者
Qi, Yi [1 ]
Jafferis, Noah T. [2 ]
Lyons, Kenneth, Jr. [1 ]
Lee, Christine M. [1 ]
Ahmad, Habib [3 ]
McAlpine, Michael C. [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
Energy conversion; piezoelectric nanoribbons; piezo force microscopy; flexible electronics; bioMEMS; nanomechanics; TITANATE THIN-FILMS; NANOWIRE ARRAYS; ELECTROMECHANICAL PROPERTIES; FERROELECTRIC PROPERTIES; ELECTRONICS; PIEZORESPONSE; COEFFICIENT; NANOSCALE; CERAMICS; SENSORS;
D O I
10.1021/nl903377u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices., and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-Force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.
引用
收藏
页码:524 / 528
页数:5
相关论文
共 39 条
[1]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[2]   Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale [J].
Bonnell, D. A. ;
Kalinin, S. V. ;
Kholkin, A. L. ;
Gruverman, A. .
MRS BULLETIN, 2009, 34 (09) :648-657
[3]   0-3 Piezoelectric composite film with high d33 coefficient [J].
Chen, XD ;
Yang, DB ;
Jiang, YD ;
Wu, ZM ;
Li, D ;
Gou, FJ ;
Yang, JD .
SENSORS AND ACTUATORS A-PHYSICAL, 1998, 65 (2-3) :194-196
[4]   Determination of cross sectional variation of ferroelectric properties for thin film (Ca. 500 nm) PZT (30/70) via PFM [J].
Dunn, S .
INTEGRATED FERROELECTRICS, 2003, 59 :1505-1512
[5]   Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing [J].
Fan, Zhiyong ;
Ho, Johnny C. ;
Jacobson, Zachery A. ;
Yerushalmi, Roie ;
Alley, Robert L. ;
Razavi, Haleh ;
Javey, Ali .
NANO LETTERS, 2008, 8 (01) :20-25
[6]   Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers [J].
Flynn, AM ;
Sanders, SR .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2002, 17 (01) :8-14
[7]   Single-crystal Pb(ZrxTi1-x)O-3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties [J].
Foster, CM ;
Bai, GR ;
Csencsits, R ;
Vetrone, J ;
Jammy, R ;
Wills, LA ;
Carr, E ;
Amano, J .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (05) :2349-2357
[8]   High-speed integrated nanowire circuits [J].
Friedman, RS ;
McAlpine, MC ;
Ricketts, DS ;
Ham, D ;
Lieber, CM .
NATURE, 2005, 434 (7037) :1085-1085
[9]   ELECTROSTRICTION AS THE ORIGIN OF PIEZOELECTRICITY IN FERROELECTRIC POLYMERS [J].
FURUKAWA, T ;
SEO, N .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1990, 29 (04) :675-680
[10]  
Häusler E, 1984, FERROELECTRICS, V60, P277, DOI 10.1080/00150198408017528