"Gel-like" Mechanical Reinforcement in Polymer Nanocomposite Melts

被引:203
作者
Akcora, Pinar [1 ]
Kumar, Sanat K. [1 ]
Moll, Joseph [2 ]
Lewis, Sarah [3 ]
Schadler, Linda S. [3 ]
Li, Yu [4 ]
Benicewicz, Brian C. [4 ]
Sandy, Alec [5 ]
Narayanan, Suresh [5 ]
Illavsky, Jan [5 ]
Thiyagarajan, Pappannan [5 ]
Colby, Ralph H. [6 ]
Douglas, Jack F. [7 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
[3] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY USA
[4] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[5] Argonne Natl Lab, Argonne, IL 60439 USA
[6] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[7] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
DYNAMICAL LIGHT-SCATTERING; NONLINEAR VISCOELASTICITY; THERMOELASTIC PROPERTIES; NANOPARTICLES; DISPERSION; RHEOLOGY; BEHAVIOR; COMPOSITES; STRATEGIES; MODEL;
D O I
10.1021/ma902072d
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We critically explore the role of particle dispersion oil the melt state mechanical properties of nanocomposites formed by mixing polystyrene homopolymers with polystyrene grafted silica nanoparticles. We selected this system since we previously showed that nanoparticle spatial distribution can be controlled through judicious choices of the brush and matrix parameters. Here we focus oil the temporal evolution of the nanoparticle self-assembly dispersion state and its effect on mechanical reinforcement using rheology, electron microscopy, and the measurement of nanoscale particle dynamics using X-ray photon correlation spectroscopy. Nanoscale and macroscopic experiments show that it composite with percolating sheets of particles displays "gel-like" or solid-like mechanical behavior at lower particle loadings than one with uniform particle dispersion. This conclusion allows us to conjecture that mechanical reinforcement is primarily controlled by interparticle interactions (including those facilitated by the grafted chains) and that the matrix plays a relatively minor role. This statement has far-reaching consequences oil the design of polymer nanocomposites with desired properties.
引用
收藏
页码:1003 / 1010
页数:8
相关论文
共 43 条
[11]   Micromechanical mechanism of reinforcement and losses in filled rubbers [J].
Gusev, Andrei A. .
MACROMOLECULES, 2006, 39 (18) :5960-5962
[12]   Mean-field theoretical analysis of brush-coated nanoparticle dispersion in polymer matrices [J].
Harton, Shane E. ;
Kumar, Sanat K. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2008, 46 (04) :351-358
[13]   Optimum graft density for dispersing particles in polymer melts [J].
Hasegawa, R ;
Aoki, Y ;
Doi, M .
MACROMOLECULES, 1996, 29 (20) :6656-6662
[14]  
Heinrich G, 2004, KAUT GUMMI KUNSTST, V57, P452
[15]  
Heinrich G, 2002, ADV POLYM SCI, V160, P1
[16]   Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites [J].
Hine, PJ ;
Lusti, HR ;
Gusev, AA .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (10-11) :1445-1453
[17]   Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites [J].
Kashiwagi, Takashi ;
Fagan, Jeffrey ;
Douglas, Jack F. ;
Yamamoto, Kazuya ;
Heckert, Alan N. ;
Leigh, Stefan D. ;
Obrzut, Jan ;
Du, Fangming ;
Lin-Gibson, Sheng ;
Mu, Minfang ;
Winey, Karen I. ;
Haggenmueller, Reto .
POLYMER, 2007, 48 (16) :4855-4866
[18]   Strategies for dispersing nanoparticles in polymers [J].
Krishnamoorti, Ramanan .
MRS BULLETIN, 2007, 32 (04) :341-347
[19]   Gelation in physically associating polymer solutions [J].
Kumar, SK ;
Douglas, JF .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :188301-1
[20]   Silica nanoparticle dispersions in homopolymer versus block copolymer [J].
Lan, Qiang ;
Francis, Lorraine F. ;
Bates, Frank S. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (16) :2284-2299