On levels in arrangements of lines, segments, planes, and triangles

被引:46
作者
Agarwal, PK
Aronov, B
Chan, TM
Sharir, M
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Univ Miami, Dept Math & Comp Sci, Coral Gables, FL 33124 USA
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[5] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/PL00009348
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of bounding the complexity of the kth level in an arrangement of n curves or surfaces, a problem dual to, and an extension of, the well-known k-set problem, Among other results, we prove a new bound, O(nk(5/3)), on the complexity of the kth level in an arrangement of n planes in R-3, or on the number of k-sets in a set of n points in three dimensions, and we show that the complexity of the kth level in an arrangement of n line segments in the plane is O (n root k alpha(n/k)), and that the complexity of the kth level in an arrangement of n triangles in 3-space is O(n(2)k(5/6)alpha(n/k)).
引用
收藏
页码:315 / 331
页数:17
相关论文
共 30 条
[1]  
Agarwal P. K., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P30, DOI 10.1145/262839.262856
[2]  
ANDRZEJAK A, UNPUB K SETS J FACET
[3]   POINTS AND TRIANGLES IN THE PLANE AND HALVING PLANES IN SPACE [J].
ARONOV, B ;
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :435-442
[4]   ON THE NUMBER OF HALVING PLANES [J].
BARANY, I ;
FUREDI, Z ;
LOVASZ, L .
COMBINATORICA, 1990, 10 (02) :175-183
[5]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[6]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[7]   A BOUND ON LOCAL MINIMA OF ARRANGEMENTS THAT IMPLIES THE UPPER BOUND THEOREM [J].
CLARKSON, KL .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (04) :427-433
[8]   COUNTING TRIANGLE CROSSINGS AND HALVING PLANES [J].
DEY, TK ;
EDELSBRUNNER, H .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (03) :281-289
[9]   Improved bounds on planar k-sets and k-levels [J].
Dey, TK .
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, :156-161
[10]  
Dey Tusharkanti, COMMUNICATION