Necessary condition for the quantum adiabatic approximation

被引:42
作者
Boixo, S. [1 ]
Somma, R. D. [2 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
COMPUTATION;
D O I
10.1103/PhysRevA.81.032308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A gapped quantum system that is adiabatically perturbed remains approximately in its eigenstate after the evolution. We prove that, for constant gap, general quantum processes that approximately prepare the final eigenstate require a minimum time proportional to the ratio of the length of the eigenstate path to the gap. Thus, no rigorous adiabatic condition can yield a smaller cost. We also give a necessary condition for the adiabatic approximation that depends on local properties of the path, which is appropriate when the gap varies.
引用
收藏
页数:4
相关论文
共 38 条
[31]   General error estimate for adiabatic quantum computing [J].
Schaller, Gernot ;
Mostame, Sarah ;
Schuetzhold, Ralf .
PHYSICAL REVIEW A, 2006, 73 (06)
[32]   On nonadiabatic processes m inhomogeneous fields [J].
Schwinger, J .
PHYSICAL REVIEW, 1937, 51 (08) :0648-0651
[33]   Quantum simulations of classical annealing processes [J].
Somma, R. D. ;
Boixo, S. ;
Barnum, H. ;
Knill, E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)
[34]  
Teufel S., 2003, Adiabatic perturbation theory in quantum dynamics
[35]   Quantitative conditions do not guarantee the validity of the adiabatic approximation [J].
Tong, DM ;
Singh, K ;
Kwek, LC ;
Oh, CH .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[36]   Quantum algorithm for approximating partition functions [J].
Wocjan, Pawel ;
Chiang, Chen-Fu ;
Nagaj, Daniel ;
Abeyesinghe, Anura .
PHYSICAL REVIEW A, 2009, 80 (02)
[37]  
Yu Kitaev A., 2002, Classical and quantum computation
[38]   Holonomic quantum computation [J].
Zanardi, P ;
Rasetti, M .
PHYSICS LETTERS A, 1999, 264 (2-3) :94-99