Factors determining properties of multi-walled carbon nanotubes/fibres deposited by PECVD

被引:37
作者
Bell, M. S. [1 ]
Teo, K. B. K. [1 ]
Milne, W. I. [1 ]
机构
[1] Univ Cambridge, Engn Dept, Elect Engn Dept, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0022-3727/40/8/S07
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper presents a number of factors which have been found to be important to the growth of carbon nanotubes and nanofibres by plasma enhanced chemical vapour deposition. The effect of the electric field in a plasma discharge on nanotube growth is investigated and shown to be important in achieving nanotube alignment. The use of a plasma discharge also enables deposition to take place at lower temperatures, facilitating the use of substrates which would otherwise be damaged. The effect of varying the ratio of carbon feedstock gas to etchant gas is investigated and the ratio is shown to be important for controlling the shape of deposited nanostructures. The effects of varying plasma power are investigated, showing that greater plasma power results in a lower growth rate. Higher levels of plasma power are also shown to cause the sidewalls of deposited carbon nanotubes to be etched. Finally, the growth rate of carbon nanotubes and nanofibres is shown to depend upon the strength of the local electric field. It is proposed that a higher field causes greater ionization within the plasma, which results in a higher growth rate. This is borne out by comparing simulation results with experimental observations.
引用
收藏
页码:2285 / 2292
页数:8
相关论文
共 28 条
[1]  
Baker R.T.K., 1978, CHEM PHYS CARBON, V14, P83
[2]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[3]   Carbon nanotubes by plasma-enhanced chemical vapor deposition [J].
Bell, Martin S. ;
Teo, Kenneth B. K. ;
Lacerda, Rodrigo G. ;
Milne, W. I. ;
Hash, David B. ;
Meyyappan, M. .
PURE AND APPLIED CHEMISTRY, 2006, 78 (06) :1117-1125
[4]   Plasma composition during plasma-enhanced chemical vapor deposition of carbon nanotubes [J].
Bell, MS ;
Lacerda, RG ;
Teo, KBK ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Milne, WI ;
Chhowalla, M .
APPLIED PHYSICS LETTERS, 2004, 85 (07) :1137-1139
[5]   Large-area synthesis of carbon nanofibres at room temperature [J].
Boskovic, BO ;
Stolojan, V ;
Khan, RUA ;
Haq, S ;
Silva, SRP .
NATURE MATERIALS, 2002, 1 (03) :165-168
[6]   Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition [J].
Bower, C ;
Zhou, O ;
Zhu, W ;
Werder, DJ ;
Jin, SH .
APPLIED PHYSICS LETTERS, 2000, 77 (17) :2767-2769
[7]   Plasma-induced alignment of carbon nanotubes [J].
Bower, C ;
Zhu, W ;
Jin, SH ;
Zhou, O .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :830-832
[8]   Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes [J].
Cassell, AM ;
Verma, S ;
Delzeit, L ;
Meyyappan, M ;
Han, J .
LANGMUIR, 2001, 17 (02) :260-264
[9]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[10]   Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature [J].
Choi, YC ;
Bae, DJ ;
Lee, YH ;
Lee, BS ;
Park, GS ;
Choi, WB ;
Lee, NS ;
Kim, JM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2000, 18 (04) :1864-1868