Robust mixture modeling using multivariate skew t distributions

被引:179
作者
Lin, Tsung-I [1 ,2 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Inst Stat, Taichung 402, Taiwan
关键词
MCEM-type algorithms; MSN; MST; Multivariate truncated normal; Multivariate truncated t; Outliers; MAXIMUM-LIKELIHOOD-ESTIMATION; UNKNOWN NUMBER; EM ALGORITHM; INFERENCE; ECM;
D O I
10.1007/s11222-009-9128-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a robust mixture modeling framework using the multivariate skew t distributions, an extension of the multivariate Student's t family with additional shape parameters to regulate skewness. The proposed model results in a very complicated likelihood. Two variants of Monte Carlo EM algorithms are developed to carry out maximum likelihood estimation of mixture parameters. In addition, we offer a general information-based method for obtaining the asymptotic covariance matrix of maximum likelihood estimates. Some practical issues including the selection of starting values as well as the stopping criterion are also discussed. The proposed methodology is applied to a subset of the Australian Institute of Sport data for illustration.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 41 条
[31]   Programs in R for computing truncated t distributions [J].
Nadarajah, Saralees ;
Kotz, Samuel .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2007, 23 (02) :273-278
[32]   Robust mixture modelling using the t distribution [J].
Peel, D ;
McLachlan, GJ .
STATISTICS AND COMPUTING, 2000, 10 (04) :339-348
[33]  
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO
[34]  
2
[35]   Automated high-dimensional flow cytometric data analysis [J].
Pyne, Saumyadipta ;
Hu, Xinli ;
Wang, Kui ;
Rossin, Elizabeth ;
Lin, Tsung-I ;
Maier, Lisa M. ;
Baecher-Allan, Clare ;
McLachlan, Geoffrey J. ;
Tamayo, Pablo ;
Hafler, David A. ;
De Jager, Philip L. ;
Mesirov, Jill P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (21) :8519-8524
[36]   MIXTURE DENSITIES, MAXIMUM-LIKELIHOOD AND THE EM ALGORITHM [J].
REDNER, RA ;
WALKER, HF .
SIAM REVIEW, 1984, 26 (02) :195-237
[37]   On Bayesian analysis of mixtures with an unknown number of components [J].
Richardson, S ;
Green, PJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (04) :731-758
[38]   A new class of multivariate skew distributions with applications to Bayesian regression models [J].
Sahu, SK ;
Dey, DK ;
Branco, MD .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (02) :129-150
[39]  
Titterington D.M., 1985, STAT ANAL FINITE MIX
[40]   A MONTE-CARLO IMPLEMENTATION OF THE EM ALGORITHM AND THE POOR MANS DATA AUGMENTATION ALGORITHMS [J].
WEI, GCG ;
TANNER, MA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (411) :699-704