Assessing Perceived Image Quality Using Steady-State Visual Evoked Potentials and Spatio-Spectral Decomposition

被引:25
作者
Bosse, Sebastian [1 ]
Acqualagna, Laura [2 ]
Samek, Wojciech [1 ]
Porbadnigk, Anne K. [3 ]
Curio, Gabriel [4 ]
Blankertz, Benjamin [2 ]
Mueller, Klaus-Robert [3 ,5 ]
Wiegand, Thomas [6 ,7 ]
机构
[1] Fraunhofer Heinrich Hertz Inst, Video Coding & Analyt Dept, D-10587 Berlin, Germany
[2] Tech Univ Berlin, Neurotechnol Grp, D-10587 Berlin, Germany
[3] Tech Univ Berlin, Machine Learning Lab, D-10587 Berlin, Germany
[4] Charite, Dept Neurol & Clin Neurophysiol, D-10117 Berlin, Germany
[5] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
[6] Fraunhofer Heinrich Hertz Inst, D-10587 Berlin, Germany
[7] Tech Univ Berlin, Image Commun Lab, D-10587 Berlin, Germany
关键词
EEG; SSVEP; video quality assessment; classification; MOS; spatio-spectral decomposition; SINGLE-TRIAL ANALYSIS; VIDEO QUALITY; EEG; OSCILLATIONS; FRAMEWORK;
D O I
10.1109/TCSVT.2017.2694807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Steady-state visual evoked potentials (SSVEPs) are neural responses, measurable using electroencephalography (EEG), that are directly linked to sensory processing of visual stimuli. In this paper, SSVEP is used to assess the perceived quality of texture images. The EEG-based assessment method is compared with conventional methods, and recorded EEG data are correlated to obtained mean opinion scores (MOSs). A dimensionality reduction technique for EEG data called spatio-spectral decomposition (SSD) is adapted for the SSVEP framework and used to extract physiologically meaningful and plausible neural components from the EEG recordings. It is shown that the use of SSD not only increases the correlation between neural features and MOS to r = -0.93, but also solves the problem of channel selection in an EEG-based image-quality assessment.
引用
收藏
页码:1694 / 1706
页数:13
相关论文
共 54 条
[21]   Dimensionality reduction for the analysis of brain oscillations [J].
Haufe, Stefan ;
Daehne, Sven ;
Nikulin, Vadim V. .
NEUROIMAGE, 2014, 101 :583-597
[22]   On the interpretation of weight vectors of linear models in multivariate neuroimaging [J].
Haufe, Stefan ;
Meinecke, Frank ;
Goergen, Kai ;
Daehne, Sven ;
Haynes, John-Dylan ;
Blankertz, Benjamin ;
Biessgmann, Felix .
NEUROIMAGE, 2014, 87 :96-110
[23]  
Kroupi E, 2014, IEEE INT CON MULTI
[24]  
Kylberg G., 2011, BLUE SERIES
[25]   Perceptual visual quality metrics: A survey [J].
Lin, Weisi ;
Kuo, C-C Jay .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2011, 22 (04) :297-312
[26]  
Lindemann L., 2011, 2011 18th IEEE International Conference on Image Processing (ICIP 2011), P3109, DOI 10.1109/ICIP.2011.6116324
[27]  
Lindemann L., 2011, P ACM SIGGRAPH S APP, P53
[28]   The common European framework of reference for languages: Perspectives on the making of supranational language education policy [J].
Little, David .
MODERN LANGUAGE JOURNAL, 2007, 91 (04) :645-655
[29]   The effect of contrast polarity reversal on face detection: Evidence of perceptual asymmetry from sweep VEP [J].
Liu-Shuang, Joan ;
Ales, Justin M. ;
Rossion, Bruno ;
Norcia, Anthony M. .
VISION RESEARCH, 2015, 108 :8-19
[30]   On the statistical significance of electrophysiological steady-state responses [J].
Meigen, T ;
Bach, M .
DOCUMENTA OPHTHALMOLOGICA, 1999, 98 (03) :207-232