Locally and globally riddled basins in two coupled piecewise-linear maps

被引:57
作者
Maistrenko, Y
Kapitaniak, T
Szuminski, P
机构
[1] Ukrainian Acad Sci, Inst Math, UA-252601 Kiev, Ukraine
[2] Tech Univ Lodz, Div Dynam, PL-90924 Lodz, Poland
关键词
D O I
10.1103/PhysRevE.56.6393
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The chaos synchronization and riddled basins phenomena are discussed for a family of two-dimensional piecewise linear endomorphisms that consist of two linearly coupled one-dimensional maps. Rigorous conditions for the occurrence of both phenomena are given. Different scenarios for the transition from locally to globally riddled basins and blowout bifurcation have been identified and described.
引用
收藏
页码:6393 / 6399
页数:7
相关论文
共 32 条
[21]  
MAISTRENKO VL, UNPUB
[22]  
MAISTRENKO VL, 1994, CHAOS NONLINEAR MECH
[23]   Different types of chaos synchronization in two coupled piecewise linear maps [J].
Maistrenko, Y ;
Kapitaniak, T .
PHYSICAL REVIEW E, 1996, 54 (04) :3285-3292
[24]   CYCLES OF CHAOTIC INTERVALS IN A TIME-DELAYED CHUA'S CIRCUIT [J].
Maistrenko, Yu. L. ;
Maistrenko, V. L. ;
Chua, L. O. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1557-1572
[25]   ON THE CONCEPT OF ATTRACTOR [J].
MILNOR, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (02) :177-195
[26]   BORDER-COLLISION BIFURCATIONS FOR PIECEWISE-SMOOTH ONE-DIMENSIONAL MAPS [J].
NUSSE, HE ;
YORKE, JA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (01) :189-207
[27]   THE TRANSITION TO CHAOTIC ATTRACTORS WITH RIDDLED BASINS [J].
OTT, E ;
ALEXANDER, JC ;
KAN, I ;
SOMMERER, JC ;
YORKE, JA .
PHYSICA D, 1994, 76 (04) :384-410
[28]   BLOWOUT BIFURCATIONS - THE OCCURRENCE OF RIDDLED BASINS AND ON OFF INTERMITTENCY [J].
OTT, E ;
SOMMERER, JC .
PHYSICS LETTERS A, 1994, 188 (01) :39-47
[29]  
Parlitz U, 1992, INT J BIFURCAT CHAOS, V2, P973, DOI 10.1142/S0218127492000823
[30]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824