Top-Gated Graphene Nanoribbon Transistors with Ultrathin High-k Dielectrics

被引:148
作者
Liao, Lei [1 ]
Bai, Jingwei [2 ]
Cheng, Rui [2 ]
Lin, Yung-Chen [2 ]
Jiang, Shan [1 ]
Huang, Yu [2 ,3 ]
Duan, Xiangfeng [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Nanoelectronics; graphene nanoribbon; core-shell nanowire; transistor; transconductance; ATOMIC LAYER DEPOSITION; HFO2; THIN-FILMS;
D O I
10.1021/nl100840z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The integration ultrathin high dielectric constant (high-k) materials with graphene nanoribbons (GNRs) for top-gated transistors can push their performance limit for nanoscale electronics. Here we report the assembly of Si/HfO2 core/shell nanowires on top of individual GNRs as the top-gates for GNR held-effect transistors with ultrathin high-k dielectrics. The Si/HfO2 core/shell nanowires are synthesized by atomic layer deposition of the HfO2 shell on highly doped silicon nanowires with a precise control of the dielectric thickness down to 1-2 nm. Using the core/shell nanowires as the top-gates, high-performance GNR transistors have been achieved with transconductance reaching 3.2 mS mu m(-1). the highest value for GNR transistors reported to date. This method, for the first time, demonstrates the effective integration of ultrathin high-k dielectrics with graphene with precisely controlled thickness and quality, representing an important step toward high-performance graphene electronics.
引用
收藏
页码:1917 / 1921
页数:5
相关论文
共 37 条
[1]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[2]   Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask [J].
Bai, Jingwei ;
Duan, Xiangfeng ;
Huang, Yu .
NANO LETTERS, 2009, 9 (05) :2083-2087
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots [J].
Bunch, JS ;
Yaish, Y ;
Brink, M ;
Bolotin, K ;
McEuen, PL .
NANO LETTERS, 2005, 5 (02) :287-290
[6]   High-κ/metal-gate stack and its MOSFET characteristics [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Kavalieros, J ;
Metz, M .
IEEE ELECTRON DEVICE LETTERS, 2004, 25 (06) :408-410
[7]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[8]   Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate [J].
Cho, MJ ;
Park, J ;
Park, HB ;
Hwang, CS ;
Jeong, J ;
Hyun, KS .
APPLIED PHYSICS LETTERS, 2002, 81 (02) :334-336
[9]   Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors [J].
Farmer, Damon B. ;
Chiu, Hsin-Ying ;
Lin, Yu-Ming ;
Jenkins, Keith A. ;
Xia, Fengnian ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (12) :4474-4478
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191