Evaluation of siloxane and polyhedral silsesquioxane copolymers for 157 nm lithography

被引:28
作者
Bellas, V [1 ]
Tegou, E
Raptis, I
Gogolides, E
Argitis, P
Iatrou, H
Hadjichristidis, N
Sarantopoulou, E
Cefalas, AC
机构
[1] NCSR Demokritos, Inst Microelect, Aghia Paraskevi 15310, Greece
[2] Univ Athens, Dept Chem, Zografos 15771, Greece
[3] NHRF, Inst Theoret & Phys Chem, Athens 11635, Greece
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2002年 / 20卷 / 06期
关键词
D O I
10.1116/1.1526358
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Siloxane and silsesquioxane copolymers have been synthesized and first evaluated as potential components of 157 nm resist materials. In block copolymers of dimethylsiloxane and tert-butyl methacrylate negative imaging chemistry dominates at 157 nm, due to the presence of the siloxane component, although positive imaging in aqueous base developers via chemical amplification was obtained at longer wavelengths (248. nm). The same behavior is observed in graft copolymers of dimethylsiloxane and tert-butyl methacrylate. On the other hand, random copolymers of polymerizable polyhedral oligomeric silsesquioxane monomers with various acrylates, including partially fluorinated, can be used as components of resist formulations that provide positive imaging at 157 nm, aqueous base development, and physicochemical properties which resemble those of conventional poly (meth)acrylates. Pattern transfer properties depend on the selection of the silsesquioxane component. Polymers containing 30% or higher w/w ethyl-substituted silsesquioxane cages provide the necessary etch resistance as well as low surface roughness to oxygen plasma at 100 nm film thickness, allowing bilayer 157 nm lithography, even without further absorbance optimization. (C) 2002 American Vacuum Society.
引用
收藏
页码:2902 / 2908
页数:7
相关论文
共 20 条
[1]   Heterofunctional linking agents for the synthesis of well-defined block copolymers of dimethylsiloxane and tert-butyl methacrylate or 2-vinylpyridine [J].
Bellas, V ;
Iatrou, H ;
Pitsinos, EN ;
Hadjichristidis, N .
MACROMOLECULES, 2001, 34 (16) :5376-5378
[2]   Vacuum ultraviolet 4f95d→4f10 interconfigurational transitions of Ho3+ ions in LiLuF4 single crystals [J].
Cefalas, AC ;
Sarantopoulou, E ;
Kollia, Z .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (04) :625-630
[3]   FOURIER-TRANSFORM INFRARED AND ELECTRON-SPECTROSCOPY FOR CHEMICAL-ANALYSIS STUDIES OF BLOCK COPOLYMERS OF STYRENE AND DIMETHYLSILOXANE [J].
CHEN, X ;
GARDELLA, JA ;
KUMLER, PL .
MACROMOLECULES, 1992, 25 (24) :6621-6630
[4]  
CRIVELLO JV, 1987, Patent No. 4689289
[5]  
Gabor AH, 1995, ACS SYM SER, V614, P281
[6]   Investigation of discrimination enhancement in polysilsesquioxane based positive resist for ArF lithography [J].
Hatakeyama, J ;
Nakashima, M ;
Kaneko, I ;
Nagura, S ;
Ishihara, T .
ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XV, PTS 1 AND 2, 1998, 3333 :62-72
[7]   Photoresist outgassing at 157 nm exposure [J].
Hien, S ;
Angood, S ;
Ashworth, D ;
Basset, S ;
Bloomstein, T ;
Dean, K ;
Kunz, RR ;
Miller, D ;
Patel, S ;
Rich, G .
ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XVIII, PTS 1 AND 2, 2001, 4345 :439-447
[8]   Outlook for 157-nm resist design [J].
Kunz, RR ;
Bloomstein, TM ;
Hardy, DE ;
Goodman, RB ;
Downs, DK ;
Curtin, JE .
MICROLITHOGRAPHY 1999: ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XVI, PTS 1 AND 2, 1999, 3678 :13-23
[9]   USE OF ORGANOSILICON POLYMERS IN MULTILAYER PLASMA RESIST PROCESSING. [J].
Paraszczak, J. ;
Babich, E. ;
McGouey, R. ;
Heidenreich, J. ;
Hatzakis, M. ;
Shaw, J. .
Microelectronic Engineering, 1987, 6 (1-4) :453-460
[10]   Surface and line-edge roughness in solution and plasma developed negative tone resists: Experiment and simulation [J].
Patsis, GP ;
Tserepi, A ;
Raptis, I ;
Glezos, N ;
Gogolides, E ;
Valamontes, ES .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (06) :3292-3296