Solving monotone inclusions via compositions of nonexpansive averaged operators

被引:352
作者
Combettes, PL [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
averaged operator; Douglas-Rach ford method; forward-backward method; monotone inclusion; monotone operator; proximal point algorithm;
D O I
10.1080/02331930412331327157
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A unified fixed point theoretic framework is proposed to investigate the asymptotic behavior of algorithms for finding solutions to monotone inclusion problems. The basic iterative scheme under consideration involves nonstationary compositions of perturbed averaged nonexpansive operators. The analysis covers proximal methods for common zero problems as well as for various splitting methods for finding a zero of the sum of monotone operators.
引用
收藏
页码:475 / 504
页数:30
相关论文
共 60 条
[1]  
ACKER F, 1980, ANN FC TOULOSE 2, V5, P2
[2]  
Attouch H., 1996, J. Convex Anal., V3, P1
[3]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[4]  
Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
[5]   PROPERTIES OF ANGLE-BOUNDED AND N-CYCLICALLY MONOTONE OPERATORS [J].
BAILLON, JB ;
HADDAD, G .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 26 (02) :137-150
[6]  
BAKUSINSKII A. B., 1974, SOV MATH DOKL, V15, P1705
[7]  
Bauschke H.H., 1997, CONT MATH, V204, P1
[8]   Finding best approximation pairs relative to two closed convex sets in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL ;
Luke, DR .
JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) :178-192
[9]   DYKSTRA ALTERNATING PROJECTION ALGORITHM FOR 2 SETS [J].
BAUSCHKE, HH ;
BORWEIN, JM .
JOURNAL OF APPROXIMATION THEORY, 1994, 79 (03) :418-443
[10]   The composition of projections onto closed convex sets in Hilbert space is asymptotically regular [J].
Bauschke, HH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (01) :141-146