A realistic model of photon beams generated by clinical linear accelerators has been incorporated in a convolution/superposition method to compute dose distributions in photon treatment fields. In this beam model, a primary photon source represents photons directly from the target, and an extra-focal photon source represents scattered photons from the primary collimator and the flattening filter. Monte Carlo simulation was used to study clinical linear accelerators producing photon beams. From the output of the Monte Carlo simulation, the fluence and spectral distributions of each photon component, as well as the geometrical characteristics of each photon source with respect to its distance to the isocenter and its source distribution, were analyzed. These quantities were used to reproduce realistic photon distributions in treatment fields, and thus to compute dose distributions using the convolution method. Our results showed that compared to the primary photon fluence, the extra-focal photon fluence from the primary collimator and the flattening filter was 11%-16% at the isocenter, among which 70% was contributed by the flattening filter. The variation of extra-focal photons in different treatment fields was predicted accurately by accounting for the finite size of the extra-focal source. Compared to measurements, dose distributions in photon treatment fields, including those of asymmetric jaw settings and at different SSDs were calculated accurately, particularly in the penumbral region, by using the convolution method with the new dual source photon beam model. (C) 1997 American Association of Physicists in Medicine.