Magnetically engineered spintronic sensors and memory

被引:519
作者
Parkin, S [1 ]
Jiang, X [1 ]
Kaiser, C [1 ]
Panchula, A [1 ]
Roche, K [1 ]
Samant, M [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
关键词
field sensor; giant magnetoresistance (GMR); magnetic engineering magnetic random-access memory (MRAM); magnetic recording; magnetic tunneling junction (MTJ); magnetic tunneling; magnetoelectronics; magnetoresistance; oscillatory interlayer coupling; read head; spin-dependent transport; spin valve; spintronics;
D O I
10.1109/JPROC.2003.811807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The discovery of enhanced magnetoresistance and oscillatory interlayer exchange coupling in transition metal multilayers just over a decade ago has enabled the development of new classes of magnetically engineered magnetic thin-film materials suitable for advanced magnetic sensors and magnetic random access memories. Magnetic sensors based on spin-valve giant magnetoresistive (GMR) sandwiches with artificial antiferromagnetic reference layers have resulted in enormous increases in the storage capacity of magnetic hard disk drives. The unique properties of magnetic tunnel junction (MTJ) devices has led to the development of an advanced high performance nonvolatile magnet random access memory: with density approaching that of dynamic random-access memory (RAM) and read-write speeds comparable to static RAM. Both GMR and MTJ devices are examples of spintronic materials in which the flow of spin-polarized electrons is manipulated by controlling, via magnetic fields, the orientation of magnetic moments in inhomogeneous magnetic thin film systems. More complex devices, including three-terminal hot electron magnetic tunnel transistors, suggest that there are many other applications of spintronic materials.
引用
收藏
页码:661 / 680
页数:20
相关论文
共 116 条
[61]   Giant magnetroresistance properties of specular spin valve films in a current perpendicular to plane structure [J].
Nagasaka, K ;
Seyama, Y ;
Varga, L ;
Shimizu, Y ;
Tanaka, A .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) :6943-6945
[62]  
NEEL L, 1967, ANN PHYS-PARIS, V2, P61
[63]   Exchange bias [J].
Nogués, J ;
Schuller, IK .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 192 (02) :203-232
[64]   Colossal magnetoresistance magnetic tunnel junctions grown by molecular-beam epitaxy [J].
O'Donnell, J ;
Andrus, AE ;
Oh, S ;
Colla, EV ;
Eckstein, JN .
APPLIED PHYSICS LETTERS, 2000, 76 (14) :1914-1916
[65]   Spectroscopic identification and direct imaging of interfacial magnetic spins -: art. no. 247201 [J].
Ohldag, H ;
Regan, TJ ;
Stöhr, J ;
Scholl, A ;
Nolting, F ;
Lüning, J ;
Stamm, C ;
Anders, S ;
White, RL .
PHYSICAL REVIEW LETTERS, 2001, 87 (24)
[66]   Spin reorientation at the antiferromagnetic NiO(001) surface in response to an adjacent ferromagnet [J].
Ohldag, H ;
Scholl, A ;
Nolting, F ;
Anders, S ;
Hillebrecht, FU ;
Stöhr, J .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2878-2881
[67]   SPIN-DEPENDENT ELECTRON ATTENUATION BY TRANSMISSION THROUGH THIN FERROMAGNETIC-FILMS [J].
PAPPAS, DP ;
KAMPER, KP ;
MILLER, BP ;
HOPSTER, H ;
FOWLER, DE ;
BRUNDLE, CR ;
LUNTZ, AC ;
SHEN, ZX .
PHYSICAL REVIEW LETTERS, 1991, 66 (04) :504-507
[68]   Spin polarization of CrO2 at and across an artificial barrier -: art. no. 196601 [J].
Parker, JS ;
Watts, SM ;
Ivanov, PG ;
Xiong, P .
PHYSICAL REVIEW LETTERS, 2002, 88 (19) :4
[69]  
Parkin S. S. P., 1998, U. S. patent, Patent No. [5,764,567, 5764567]
[70]  
Parkin S.S.P., 2002, SPIN DEPENDENT TRANS