What is behind the inverse Hall-Petch effect in nanocrystalline materials?

被引:448
作者
Carlton, C. E. [1 ]
Ferreira, P. J. [1 ]
机构
[1] Univ Texas, Mat Sci & Engn Div, Austin, TX 78712 USA
关键词
nanocrystalline materials; dislocations; grain boundaries; theory; plastic deformation;
D O I
10.1016/j.actamat.2007.02.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An inverse Hall-Petch effect has been observed for nanocrystalline materials by a large number of researchers. This effect implies that nanocrystalline materials get softer as grain size is reduced below a critical value. Postulated explanations for this behavior include dislocation-based models, diffusion-based models, grain-boundary-shearing models and two-phase-based models. In this paper, we report an explanation for the inverse Hall Petch effect based on the statistical absorption of dislocations by grain boundaries, showing that the yield strength is dependent on strain rate and temperature and deviates from the Hall-Petch relationship below a critical grain size. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3749 / 3756
页数:8
相关论文
共 74 条
[21]   Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal-channel angular extrusion [J].
Haouaoui, M ;
Karaman, I ;
Maier, HJ ;
Hartwig, KT .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (09) :2935-2949
[22]   In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope [J].
Haque, MA ;
Saif, MTA .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (07) :1769-1777
[23]   In situ transmission electron microscopy observations of toughening mechanisms in ultra-fine grained columnar aluminum thin films [J].
Hattar, K ;
Han, J ;
Saif, MTA ;
Robertson, IM .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (07) :1869-1877
[24]   Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers [J].
Huang, HB ;
Spaepen, F .
ACTA MATERIALIA, 2000, 48 (12) :3261-3269
[25]   HALL-PETCH STRENGTHENING FOR THE MICROHARDNESS OF 12 NANOMETER GRAIN DIAMETER ELECTRODEPOSITED NICKEL [J].
HUGHES, GD ;
SMITH, SD ;
PANDE, CS ;
JOHNSON, HR ;
ARMSTRONG, RW .
SCRIPTA METALLURGICA, 1986, 20 (01) :93-97
[26]   In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films [J].
Hugo, RC ;
Kung, H ;
Weertman, JR ;
Mitra, R ;
Knapp, JA ;
Follstaedt, DM .
ACTA MATERIALIA, 2003, 51 (07) :1937-1943
[27]   Plastic deformation of nanocrystalline Cu and Cu-0.2 wt.% B [J].
Iyer, RS ;
Frey, CA ;
Sastry, SML ;
Waller, BE ;
Buhro, WE .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 264 (1-2) :210-214
[28]  
KOCHER A, 1901, MITT GRENZGEB MED CH, V1, P1
[29]   On the "anomalous" hardness of nanocrystalline materials [J].
Konstantinidis, DA ;
Aifantis, EC .
NANOSTRUCTURED MATERIALS, 1998, 10 (07) :1111-1118
[30]   Deformation of electrodeposited nanocrystalline nickel [J].
Kumar, KS ;
Suresh, S ;
Chisholm, MF ;
Horton, JA ;
Wang, P .
ACTA MATERIALIA, 2003, 51 (02) :387-405