Plasma-aided nanofabrication: where is the cutting edge?

被引:228
作者
Ostrikov, K. [1 ]
Murphy, A. B.
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[2] CSIRO Ind Phys, Lindfield, NSW 2070, Australia
关键词
CHEMICAL-VAPOR-DEPOSITION; INDUCTIVELY-COUPLED PLASMAS; LOW-TEMPERATURE DEPOSITION; WALLED CARBON NANOTUBES; SILICON-CARBIDE FILMS; CATHODIC ARC DEPOSITION; THERMAL PLASMA; LOW-FREQUENCY; SURFACE-WAVES; ATMOSPHERIC-PRESSURE;
D O I
10.1088/0022-3727/40/8/S01
中图分类号
O59 [应用物理学];
学科分类号
摘要
Plasma-aided nanofabrication is a rapidly expanding area of research spanning disciplines ranging from physics and chemistry of plasmas and gas discharges to solid state physics, materials science, surface science, nanoscience and nanotechnology and related engineering subjects. The current status of the research field is discussed and examples of superior performance and competitive advantage of plasma processes and techniques are given. These examples are selected to represent a range of applications of two major types of plasmas suitable for nanoscale synthesis and processing, namely thermally non-equilibrium and thermal plasmas. Major concepts and terminology used in the field are introduced. The paper also pinpoints the major challenges facing plasma-aided nanofabrication and identifies some emerging topics for future research.
引用
收藏
页码:2223 / 2241
页数:19
相关论文
共 145 条
[1]   Metal plasmas for the fabrication of nanostructures [J].
Anders, Andre .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (08) :2272-2284
[2]   Control of carbon capping for regrowth of aligned carbon nanotubes [J].
AuBuchon, JF ;
Chen, LH ;
Jin, SH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (13) :6044-6048
[3]   A model of a large-area planar plasma producer based on surface wave propagation in a plasma-metal structure with a dielectric sheath [J].
Azarenkov, NA ;
Denisenko, IB ;
Ostrikov, KN .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (12) :2465-2469
[4]   A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices [J].
Bapat, Ameya ;
Gatti, Marco ;
Ding, Yong-Ping ;
Campbell, Stephen A. ;
Kortshagen, Uwe .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (08) :2247-2257
[5]   The mechanism of TiO2 deposition by direct current magnetron reactive sputtering [J].
Barnes, MC ;
Gerson, AR ;
Kumar, S ;
Hwang, NM .
THIN SOLID FILMS, 2004, 446 (01) :29-36
[6]   The effect of RF power on the deposition behavior of anatase clusters [J].
Barnes, MC ;
Gerson, AR ;
Kumar, S ;
Hwang, NM .
THIN SOLID FILMS, 2003, 436 (02) :181-185
[7]   Factors determining properties of multi-walled carbon nanotubes/fibres deposited by PECVD [J].
Bell, M. S. ;
Teo, K. B. K. ;
Milne, W. I. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (08) :2285-2292
[8]   Plasma composition during plasma-enhanced chemical vapor deposition of carbon nanotubes [J].
Bell, MS ;
Lacerda, RG ;
Teo, KBK ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Milne, WI ;
Chhowalla, M .
APPLIED PHYSICS LETTERS, 2004, 85 (07) :1137-1139
[9]   A mathematical model of the carbon arc reactor for fullerene synthesis [J].
Bilodeau, JF ;
Pousse, J ;
Gleizes, A .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 1998, 18 (02) :285-303
[10]   Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration [J].
Borra, JP .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (02) :R19-R54