Use of microhotplates in the controlled growth and characterization of metal oxides for chemical sensing

被引:31
作者
Cavicchi, RE [1 ]
Semancik, S [1 ]
DiMeo, F [1 ]
Taylor, CJ [1 ]
机构
[1] Natl Inst Stand & Technol, Chem Sci & Technol Lab, Gaithersburg, MD 20899 USA
关键词
gas sensor; microhotplate; membrane; micromachined; chemical vapor deposition; tin oxide;
D O I
10.1023/A:1023224123925
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microhotplates are micromachined platforms with integrated heaters and contact electrodes that can be used as miniature substrates for metal oxide film growth. Fabricated as arrays, they enable efficient combinatorial studies to be performed on a single chip. A variety of growth methods are compatible with their use, including evaporation, sputtering, chemical vapor deposition, and deposition from pastes or sol gels using screen printing, drop deposition, or spin-coating. The microheater on each element may be used to control the temperature during deposition or for a post-annealing step such as sintering, while the film contact electrodes serve as a built-in monitor of the fabrication process. In chemical vapor deposition using arrays, the elements with heaters set above the lowest nucleation temperature for a given precursor are the only ones that will have film deposited on them, resulting in a kind of self-lithography. This review gives examples of different methods of film growth that have been employed on microhotplates with applications for chemical sensing, with an emphasis on the chemical vapor deposition method.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 52 条
[1]  
AFRIDI M, 2001, EUROP C CIRC THEOR D
[2]   Tin oxide gas sensors [J].
Balasubramanian, A .
SOLID STATE PHENOMENA, 1997, 55 :54-58
[3]  
Barrettino D, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, P157
[4]   Detection of gases with arrays of micromachined tin oxide gas sensors [J].
Cané, C ;
Gràcia, I ;
Götz, A ;
Fonseca, L ;
Lora-Tamayo, E ;
Horrillo, MC ;
Sayago, I ;
Robla, JI ;
Rodrigo, J ;
Gutiérrez, J .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 65 (1-3) :244-246
[5]   Analysis of CO and CH4 gas mixtures by using a micromachined sensor array [J].
Capone, S ;
Siciliano, P ;
Bârsan, N ;
Weimar, U ;
Vasanelli, L .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 78 (1-3) :40-48
[6]   Spin-on nanoparticle tin oxide for microhotplate gas sensors [J].
Cavicchi, RE ;
Walton, RM ;
Aquino-Class, M ;
Allen, JD ;
Panchapakesan, B .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 77 (1-2) :145-154
[7]   FAST TEMPERATURE-PROGRAMMED SENSING FOR MICRO-HOTPLATE GAS SENSORS [J].
CAVICCHI, RE ;
SUEHLE, JS ;
KREIDER, KG ;
GAITAN, M ;
CHAPARALA, P .
IEEE ELECTRON DEVICE LETTERS, 1995, 16 (06) :286-288
[8]   Microhotplate gas sensor arrays [J].
Cavicchi, RE ;
Semancik, S ;
Walton, RM ;
Panchapakesan, B ;
DeVoe, DL ;
Aquino-Class, M ;
Allen, JD ;
Suehle, JS .
CHEMICAL MICROSENSORS AND APPLICATIONS II, 1999, 3857 :38-49
[9]   GROWTH OF SNO2 FILMS ON MICROMACHINED HOTPLATES [J].
CAVICCHI, RE ;
SUEHLE, JS ;
KREIDER, KG ;
SHOMAKER, BL ;
SMALL, JA ;
GAITAN, M ;
CHAPARALA, P .
APPLIED PHYSICS LETTERS, 1995, 66 (07) :812-814
[10]   An integrated gas sensor technology using surface micro-machining [J].
Chan, PCH ;
Yan, GZ ;
Sheng, LY ;
Sharma, RK ;
Tang, Z ;
Sin, JKO ;
Hsing, IM ;
Wang, Y .
SENSORS AND ACTUATORS B-CHEMICAL, 2002, 82 (2-3) :277-283