Silicon heterojunction solar cell: A new buffer layer concept with low-temperature epitaxial silicon

被引:22
作者
Centurioni, E [1 ]
Iencinella, D
Rizzoli, R
Zignani, F
机构
[1] CNR, Inst Microelect & Microsyst, Sez Bologna, I-40129 Bologna, Italy
[2] Univ Bologna, Dept Appl Chem & Mat Sci, I-40136 Bologna, Italy
关键词
amorphous materials; epitaxial growth; photovoltaic cells; semiconductor heterojunctions;
D O I
10.1109/TED.2004.836801
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Amorphous silicon/crystalline silicon heterojunction solar cells, deposited by the plasma-enhanced chemical vapor deposition (PECVD) technique, have been fabricated using different technologies to passivate defects at the heterointerface: without treatment, the insertion of a thin intrinsic amorphous layer or that of a thin intrinsic epitaxial layer. The open circuit voltage of heterojunction solar cells fabricated including an intrinsic amorphous buffer layer is strangely lower than in devices with no buffer layer. The structure of the amorphous buffer layer is investigated by high resolution transmission electron microscope observations. As an alternative to amorphous silicon, the insertion of a fully epitaxial silicon layer, deposited at low temperature with conventional PECVD technique in a hydrogen-silane gas mixture, was tested. Using the amorphous silicon/crystalline silicon (p a-Si/i epi-Si/n c-Si) heterojunction structure in solar cells, a 13.5% efficiency and a 605-mV open circuit voltage were achieved on flat Czochralski silicon substrates. These results demonstrate that epitaxial silicon can be successfully used to passivate interface defects, allowing for an open circuit voltage gain of more than 50 mV compared to cells with no buffer layer. In this paper, the actual structure of the amorphous silicon buffer layer used in, heterojunction solar cells is discussed. We make the hypothesis that this buffer layer, commonly considered amorphous, is actually epitaxial.
引用
收藏
页码:1818 / 1824
页数:7
相关论文
共 18 条
[1]   Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance [J].
Centurioni, E ;
Iencinella, D .
IEEE ELECTRON DEVICE LETTERS, 2003, 24 (03) :177-179
[2]  
DAS U, 2003, P INT EL ENG CIRC DE, V150, P282
[3]  
IENCINELLA D, 2002, P PV EUR PV TECHN EN, P336
[4]   Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells [J].
Jensen, N ;
Hausner, RA ;
Bergmann, RB ;
Werner, JH ;
Rau, U .
PROGRESS IN PHOTOVOLTAICS, 2002, 10 (01) :1-13
[5]   Homojunction and heterojunction silicon solar cells deposited by low temperature-high frequency plasma enhanced chemical vapour deposition [J].
Plá, J ;
Centurioni, E ;
Summonte, C ;
Rizzoli, R ;
Migliori, A ;
Desalvo, A ;
Zignani, F .
THIN SOLID FILMS, 2002, 405 (1-2) :248-255
[6]   Influence of front contact material on silicon heterojunction solar cell performance [J].
Rizzoli, R ;
Galloni, R ;
Summonte, C ;
Pinghini, R ;
Centurioni, E ;
Zignani, F ;
Desalvo, A ;
Rava, P ;
Madan, A .
AMORPHOUS AND MICROCRYSTALLINE SILICON TECHNOLOGY - 1997, 1997, 467 :807-812
[7]  
SAWADA T, 1994, IEEE PHOT SPEC CONF, P1219, DOI 10.1109/WCPEC.1994.519952
[8]  
STANGL R, 2001, P 17 EUR PHOT SOL EN, P1387
[9]   Very high frequency hydrogen plasma treatment of growing surfaces: a study of the p-type amorphous to microcrystalline silicon transition [J].
Summonte, C ;
Rizzoli, R ;
Desalvo, A ;
Zignani, F ;
Centurioni, E ;
Pinghini, R ;
Gemmi, M .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 :624-629
[10]  
Taguchi M, 2000, PROG PHOTOVOLTAICS, V8, P503, DOI 10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO