On the problem of the existence for connecting trajectories under the action of gravitational and electromagnetic fields

被引:15
作者
Antonacci, F
Giannoni, F
Magrone, P
机构
[1] Univ Roma 3, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Camerino, Dipartimento Matemat & Fis, I-62032 Camerino, Italy
[3] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy
关键词
Lorentzian manifolds; critical points;
D O I
10.1016/S0926-2245(00)00009-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give sufficient conditions assuring the existence of timelike trajectories connecting two prescribed events in a Lorentzian manifold. They represent the trajectories of a free falling massive particle under the action of a gravitational and electromagnetic field.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 12 条
[1]  
ANTONACCI F, 1999, DIFFERENTIAL INTEGRA, V12, P521
[2]   Trajectories connecting two events of a Lorentzian manifold in the presence of a vector field [J].
Bartolo, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 153 (01) :82-95
[3]  
Beem J K., 1996, Global Lorentzian Geometry
[4]   A new variational principle for the fundamental equations of classical physics [J].
Benci, V ;
Fortunato, D .
FOUNDATIONS OF PHYSICS, 1998, 28 (02) :333-352
[5]  
Benci V, 1997, BOLL UNIONE MAT ITAL, V11A, P297
[6]   Multiple critical points for indefinite functionals and applications [J].
Candela, AM ;
Giannoni, F ;
Masiello, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 155 (01) :203-230
[7]   An intrinsic approach to the geodesical connectedness of stationary Lorentzian manifolds [J].
Giannoni, F ;
Piccione, P .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (01) :157-197
[8]  
Landau L., 1962, CLASSICAL THEORY FIE
[9]   CONVEX REGIONS OF LORENTZIAN MANIFOLDS [J].
MASIELLO, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 :299-322
[10]  
ONeill B., 1983, PURE APPL MATH, V103