The dose-rate dependence of gain degradation in lateral PNP transistors is even stronger than the dependence previously reported for NPN BJTs. In this work, several hardness-assurance approaches are examined and compared to experimental results. obtained at low dose rates. The approaches considered include irradiation at high dose rates while at elevated temperature and high-dose-rate irradiation followed by annealing. The lateral PNP transistors continue to degrade during post-irradiation annealing, in sharp contrast to NPN devices studied previously. High-temperature conditions significantly increase the degradation during high-dose-rate irradiation, with the amount of degradation continuing to increase with temperature throughout the range studied here (up to 125 degrees C). The high-temperature degradation is nearly as great as that observed at very low dose rates, and is even greater when differences between Co-60 and x-ray irradiation are accounted for. Since high-temperature irradiation has previously been shown to enhance the degradation in NPN transistors, this appears to be a promising hardness-assurance approach for bipolar integrated circuits. Based on these results, preliminary testing recommendations are discussed.