NUMERICAL CHAOS, ROUNDOFF ERRORS, AND HOMOCLINIC MANIFOLDS

被引:55
作者
ABLOWITZ, MJ
SCHOBER, C
HERBST, BM
机构
[1] Program in Applied Mathematics, University of Colorado, Boulder
关键词
D O I
10.1103/PhysRevLett.71.2683
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The focusing nonlinear Schrodinger equation is numerically integrated over moderate to long time intervals. In certain parameter regimes small errors on the order of roundoff grow rapidly and saturate at values comparable to the main wave. Although the constants of motion are nearly preserved, a serious phase instability (chaos) develops in the numerical solutions. The instability is found to be associated with homoclinic structures and the underlying mechanisms apply equally well to many Hamiltonian wave systems.
引用
收藏
页码:2683 / 2686
页数:4
相关论文
共 12 条
[1]  
Ablowitz M. J., 1991, SOLITONS NONLINEAR E, V149
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[3]  
ABLOWITZ MJ, 1989, P CRM HAMILTONIAN SY
[4]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[5]   INSTABILITY-DRIVEN ENERGY-TRANSPORT IN NEAR-INTEGRABLE, MANY DEGREES-OF-FREEDOM, HAMILTONIAN-SYSTEMS [J].
FOREST, MG ;
GOEDDE, CG ;
SINHA, A .
PHYSICAL REVIEW LETTERS, 1992, 68 (18) :2722-2725
[6]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[7]   NUMERICALLY INDUCED CHAOS IN THE NONLINEAR SCHRODINGER-EQUATION [J].
HERBST, BM ;
ABLOWITZ, MJ .
PHYSICAL REVIEW LETTERS, 1989, 62 (18) :2065-2068
[8]  
Its A. R., 1976, DOKL AKAD NAUK SSSR, V11, P965
[9]  
MA YC, 1981, STUD APPL MATH, V65, P113
[10]   CHAOTIC AND HOMOCLINIC BEHAVIOR FOR NUMERICAL DISCRETIZATIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
MCLAUGHLIN, DW ;
SCHOBER, CM .
PHYSICA D, 1992, 57 (3-4) :447-465