NEWTON REPRESENTATION OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS

被引:5
作者
BLASZAK, M [1 ]
RAUCHWOJCIECHOWSKI, S [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
来源
PHYSICA A | 1993年 / 197卷 / 1-2期
关键词
D O I
10.1016/0378-4371(93)90467-I
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new parametrization for higher order ODE's is introduced. it turns them into a set of Newton equations. When applied to stationary flows of soliton equations, this parametrization leads to new integrable mechanical systems. In the KdV case we find a new Poisson bracket of 3rd order.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 5 条
[1]   BI-HAMILTONIAN FORMULATION OF THE HENON HEILES SYSTEM AND ITS MULTIDIMENSIONAL EXTENSIONS [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1992, 163 (03) :167-172
[2]  
BLASZAK M, IN PRESS J PHYS A
[3]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[4]   A BI-HAMILTONIAN FORMULATION FOR SEPARABLE POTENTIALS AND ITS APPLICATION TO THE KEPLER-PROBLEM AND THE EULER PROBLEM OF 2 CENTERS OF GRAVITATION [J].
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1991, 160 (02) :149-154
[5]   NEWTON REPRESENTATION FOR STATIONARY FLOWS OF THE KDV HIERARCHY [J].
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1992, 170 (02) :91-94