FACTORS MEDIATING SMOOTHNESS IN EPITAXIAL THIN-FILM GROWTH

被引:106
作者
EVANS, JW
机构
[1] IOWA STATE UNIV SCI & TECHNOL,AMES LAB,AMES,IA 50011
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT MATH,AMES,IA 50011
来源
PHYSICAL REVIEW B | 1991年 / 43卷 / 05期
关键词
D O I
10.1103/PhysRevB.43.3897
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface-sensitive diffraction techniques are often used to monitor the smoothness of epitaxial thin films during growth, i.e., the propensity for layer-by-layer growth. Interpretation of such data requires an understanding of the relative importance of various factors that mediate smoothness. These include the adsorption-site geometry, the dynamics of atoms during deposition, and possible transient mobility following deposition, as well as thermal diffusion. Here we present a systematic study of the first three factors, emphasizing the interplay between geometry and dynamics. This is achieved by a comparison of several "low-temperature" far-from-equilibrium growth models where adsorption occurs at on-top sites, bridge sites, or threefold or fourfold hollow sites. Film structure is elucidated through determination of the interface width, density of steps and adsorption sites, the kinematic Bragg intensity, and short-range-order parameters. Exact analysis of nonasymptotic properties of these statistical-mechanical models is in general impossible, and so most results presented are from Monte Carlo simulation.
引用
收藏
页码:3897 / 3905
页数:9
相关论文
共 47 条
[1]   DIFFUSION OF SINGLE ADATOMS OF PLATINUM, IRIDIUM AND GOLD ON PLATINUM SURFACES [J].
BASSETT, DW ;
WEBBER, PR .
SURFACE SCIENCE, 1978, 70 (01) :520-531
[2]  
BONISSENT A, 1983, CRYSTALS GROWTH PROP, V9
[3]   DISPLACEMENT DISTRIBUTION AND ATOMIC JUMP DIRECTION IN DIFFUSION OF IR ATOMS ON THE IR(001) SURFACE [J].
CHEN, CL ;
TSONG, TT .
PHYSICAL REVIEW LETTERS, 1990, 64 (26) :3147-3150
[4]   GROWTH-MECHANISM FOR MOLECULAR-BEAM EPITAXY OF GROUP-IV SEMICONDUCTORS [J].
CLARKE, S ;
VVEDENSKY, DD .
PHYSICAL REVIEW B, 1988, 37 (11) :6559-6562
[5]   BIRTH DEATH MODELS OF EPITAXY .1. DIFFRACTION OSCILLATIONS FROM LOW INDEX SURFACES [J].
COHEN, PI ;
PETRICH, GS ;
PUKITE, PR ;
WHALEY, GJ ;
ARROTT, AS .
SURFACE SCIENCE, 1989, 216 (1-2) :222-248
[6]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[7]   REFLECTION HIGH-ENERGY ELECTRON-DIFFRACTION (RHEED) OSCILLATIONS AT 77-K [J].
EGELHOFF, WF ;
JACOB, I .
PHYSICAL REVIEW LETTERS, 1989, 62 (08) :921-924
[8]   LOW-TEMPERATURE EPITAXIAL-GROWTH OF THIN METAL-FILMS [J].
EVANS, JW ;
SANDERS, DE ;
THIEL, PA ;
DEPRISTO, AE .
PHYSICAL REVIEW B, 1990, 41 (08) :5410-5413
[9]   RANDOM-DEPOSITION MODELS FOR THIN-FILM EPITAXIAL-GROWTH [J].
EVANS, JW .
PHYSICAL REVIEW B, 1989, 39 (09) :5655-5664
[10]   MODELING OF EPITAXIAL THIN-FILM GROWTH ON FCC(100) SUBSTRATES AT LOW-TEMPERATURES [J].
EVANS, JW .
VACUUM, 1990, 41 (1-3) :479-481