INTEGRABLE QUANTUM MAPPINGS

被引:27
作者
NIJHOFF, FW
CAPEL, HW
PAPAGEORGIOU, VG
机构
[1] CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13699 USA
[2] UNIV AMSTERDAM, INST THEORET FYS, 1018 XE AMSTERDAM, NETHERLANDS
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 04期
关键词
D O I
10.1103/PhysRevA.46.2155
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A quantum R-matrix structure is presented for a family of exactly integrable multidimensional rational mappings related to lattice versions of the Korteweg-de Vries equation. It is shown that these mappings possess a commuting family of invariants.
引用
收藏
页码:2155 / 2158
页数:4
相关论文
共 59 条
[21]  
Drinfeld V G, 1986, QUANTUM GROUPS, P798
[22]   QUANTUM-MECHANICS OF CLASSICALLY NON-INTEGRABLE SYSTEMS [J].
ECKHARDT, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 163 (04) :205-297
[23]  
Faddeev L.D., 1987, HAMILTONIAN METHODS
[24]  
Faddeev L D, 1984, RECENT ADV FIELD THE, P561
[25]  
Faddeev L.D., 1986, LECT NOTES PHYS, V246, P166, DOI 10.1007/3-540-16452-9_10
[26]   INFINITE FAMILY OF POLYNOMIAL FUNCTIONS OF THE VIRASORO GENERATORS WITH VANISHING POISSON BRACKETS [J].
GERVAIS, JL .
PHYSICS LETTERS B, 1985, 160 (4-5) :277-278
[27]  
GERVAIS JL, 1985, PHYS LETT B, V160, P279, DOI 10.1016/0370-2693(85)91327-9
[28]   NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
PHYSICAL REVIEW LETTERS, 1990, 64 (02) :127-130
[29]   NUMERICALLY INDUCED CHAOS IN THE NONLINEAR SCHRODINGER-EQUATION [J].
HERBST, BM ;
ABLOWITZ, MJ .
PHYSICAL REVIEW LETTERS, 1989, 62 (18) :2065-2068
[30]   DISCRETE ANALOG OF A GENERALIZED TODA EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3785-3791