CANDYS/QA - A SOFTWARE SYSTEM FOR QUALITATIVE ANALYSIS OF NONLINEAR DYNAMICAL SYSTEMS

被引:20
作者
Feudel, Ulrike [1 ]
Jansen, Wolfgang [1 ]
机构
[1] Univ Potsdam, Max Planck Gesell Forderung Wissensch eV, Arbeitsgrp Nichtlineare Dynam, Haus S Phys,D-O-1571, Potsdam, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1992年 / 2卷 / 04期
关键词
D O I
10.1142/S0218127492000434
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Numerical methods are often needed if bifurcation phenomena in nonlinear dynamical systems are studied. In this paper the software system CANDYS/QA for numerical qualitative analysis is presented. A wide class of problems is treated: computation of invariant sets (e.g., steady-states and periodic orbits), path-following (continuation) of such sets, and the related bifurcation phenomena. The following bifurcation situations are detected and the corresponding critical points are calculated during path-following: turning, bifurcation, Hopf bifurcation, period-doubling, torus bifurcation points (one-parameter problems) as well as cusp and Takens-Bogdanov points (two-parameter problems). A number of newly developed methods (e.g., for computation of the Poincare map) as well as algorithms from the literature are described to demonstrate the whole procedure of a qualitative analysis by numerical means. An illustrative example analyzed by CANDYS/QA is included.
引用
收藏
页码:773 / 794
页数:22
相关论文
共 69 条
[41]  
Kubicek M., 1976, ACM T MATH SOFTWARE, V2, P98, DOI DOI 10.1145/355666.355675
[42]  
Kuepper T., 1984, INT SER NUMER MATH, V70
[43]  
Menzel R., 1984, NUMERICAL METHODS BI, P310
[44]   THE NUMERICAL TREATMENT OF NON-TRIVIAL BIFURCATION POINTS [J].
MOORE, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1980, 2 (06) :441-472
[45]  
MOORE G, 1980, SIAM J NUMER ANAL, V17, P567, DOI 10.1137/0717048
[46]   INSITE - A SOFTWARE TOOLKIT FOR THE ANALYSIS OF NONLINEAR DYNAMIC-SYSTEMS [J].
PARKER, TS ;
CHUA, LO .
PROCEEDINGS OF THE IEEE, 1987, 75 (08) :1081-1089
[47]   COMPUTING SIMPLE BIFURCATION POINTS USING A MINIMALLY EXTENDED SYSTEM OF NONLINEAR EQUATIONS [J].
PONISCH, G .
COMPUTING, 1985, 35 (3-4) :277-294
[48]   COMPUTING HYSTERESIS POINTS OF NONLINEAR EQUATIONS DEPENDING ON 2 PARAMETERS [J].
PONISCH, G .
COMPUTING, 1987, 39 (01) :1-17
[49]  
Ponisch G., 1981, BEITR NUMER MATH, V9, P147
[50]  
Ponisch G., 1979, PROGRAMMSYSTEM TURN