A GENERALIZED HENON-HEILES SYSTEM AND RELATED INTEGRABLE NEWTON EQUATIONS

被引:32
作者
BLASZAK, M [1 ]
RAUCHWOJCIECHOWSKI, S [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
关键词
D O I
10.1063/1.530565
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A detailed description is given of integrable cases of the generalized Henon-Heiles systems which differs from the standard H-H ones by the term alpha/q2(2), Their connection with fifth-order one-component soliton equations is discussed. Lax representations are constructed, and the bi-Hamiltonian formulation of dynamics is given. It is also shown that the gH-H system can be mapped onto another system of Newton equations with a nonstandard Hamiltonian structure.
引用
收藏
页码:1693 / 1709
页数:17
相关论文
共 18 条
[1]  
AIZAWA Y, 1972, J PHYS SOC JPN, V32, P1636, DOI 10.1143/JPSJ.32.1636
[2]   BI-HAMILTONIAN FORMULATION OF THE HENON HEILES SYSTEM AND ITS MULTIDIMENSIONAL EXTENSIONS [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1992, 163 (03) :167-172
[3]   NEWTON REPRESENTATION OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
BLASZAK, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICA A, 1993, 197 (1-2) :191-203
[4]   BI-HAMILTONIAN STRUCTURE OF AN INTEGRABLE HENON-HEILES SYSTEM [J].
CABOZ, R ;
RAVOSON, V ;
GAVRILOV, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (10) :L523-L525
[5]  
Dubrovin B.A.E., 1976, RUSSIAN MATH SURVEYS, V31, P59, DOI DOI 10.1070/RM1976V031N01ABEH001446
[6]   FACTORIZATION OF OPERATORS .1. MIURA-TRANSFORMATIONS [J].
FORDY, AP ;
GIBBONS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (10) :2508-2510
[7]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[8]  
FUJIMOTO A, 1983, MATH JPN, V28, P43
[9]   PAINLEVE PROPERTY AND INTEGRALS OF MOTION FOR THE HENON-HEILES SYSTEM [J].
GRAMMATICOS, B ;
DORIZZI, B ;
PADJEN, R .
PHYSICS LETTERS A, 1982, 89 (03) :111-113
[10]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&