共 12 条
三种数值模式气温预报产品的检验及误差订正方法研究
被引:31
作者:
王焕毅
[1
]
谭政华
[1
]
杨萌
[2
]
张翘
[1
]
蒋林杉
[1
]
机构:
[1] 本溪市气象局
[2] 潍坊市气象局
来源:
关键词:
BP神经网络;
气温;
误差;
检验;
D O I:
暂无
中图分类号:
P457.3 [温度预报];
学科分类号:
摘要:
基于德国天气在线T7online(简称T7)、ECMWF细网格(简称EC)及T639三种数值模式的气温预报产品,结合本溪站气象观测资料,对三种数值模式2014年1月至2015年12月本溪市气温预报的准确率及预报误差进行了检验和分析,根据误差分析结果利用BP神经网络模型建立了本溪市数值模式气温预报误差客观化订正模型。结果表明:对于气温预报的年检验,T7、EC和T639三种数值模式的最低气温预报准确率均高于最高气温的预报准确率;对于气温预报的月检验,三种数值模式对夏季、秋季最低气温的预报效果明显优于冬季和春季,而对于最高气温的预报,T7的气温预报准确率明显优于EC和T639模式;当气温波动较大时,三种数值模式气温的预报准确率均明显下降。三种数值模式对最低气温预报的平均误差均为2.00℃以内,对最高气温的预报准确率存较大差别,T7模式最高气温的预报误差最小,T639模式气温预报的系统偏差最明显,最低气温系统偏差为-1.34℃,最高气温系统偏差为-2.87℃。根据三种数值模式气温预报误差的特征,结合BP神经网络建立本溪市气温误差预报模型对数值模式气温预报结果进行订正,订正后气温平均绝对误差由2.40℃左右降至1.40℃左右,系统偏差和均方根误差均明显缩小,气温预报准确率由50%左右提高至80%以上,数值模式气温预报准确率明显提高,具有较好的应用价值。
引用
收藏
页码:22 / 29
页数:8
相关论文