本文通过挖掘网络搜索数据与我国流感疫情的在内在机理,利用关键词的时序特征实现了较为精准的提前预测。研究首先从信息行为、信息搜寻行为等理论概念出发,对百度指数与流感病例数据之间的逻辑关系进行探讨,建立理论框架;然后以理论框架为基础,用范围选词法对百度搜索词进行初步筛选,并利用互相关分析选出具有先行性质的关键词,用于构建预测模型;最后,对比融合百度指数的三种预测模型,评估其预测效果。互相关分析结果大致符合本文提出的逻辑框架,可提前十周预测流感疫情的关键词内容和流感疫苗相关;提前一周的关键词多涉及流感的症状表现;而同步类关键词多为常用搜索词或治疗方法。模型对比结果显示,多元线性回归模型、支持向量机模型和神经网络模型都能有效地进行流感预测,无论提前十周还是提前一周,支持向量机的效果最好。