Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

被引:57
作者
Cense, Barry [1 ]
Gao, Weihua [1 ]
Brown, Jeffrey M. [1 ]
Jones, Steven M. [2 ]
Jonnal, Ravi S. [1 ]
Mujat, Mircea [3 ]
Park, B. Hyle [4 ]
de Boer, Johannes F. [5 ,6 ]
Miller, Donald T. [1 ]
机构
[1] Indiana Univ, Sch Optometry, Bloomington, IN 47405 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Phys Sci Inc, Andover, MA 01810 USA
[4] Univ Calif Riverside, Riverside, CA 92521 USA
[5] Rotterdam Ophthalm Inst, Rotterdam, Netherlands
[6] Vrije Univ Amsterdam, Amsterdam, Netherlands
来源
OPTICS EXPRESS | 2009年 / 17卷 / 24期
基金
美国国家科学基金会;
关键词
NERVE-FIBER LAYER; IN-VIVO; HIGH-RESOLUTION; BIREFRINGENCE; THICKNESS; TISSUE; OCT;
D O I
10.1364/OE.17.021634
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25 degrees/mu m to 0.65 degrees/mu m were found in the birefringent nerve fiber layer at 6 eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. (C) 2009 Optical Society of America
引用
收藏
页码:21634 / 21651
页数:18
相关论文
共 36 条
[11]  
DEBOER JF, 2005, SYSTEMS METHODS IMAG, P40801
[12]   Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison [J].
Goetzinger, E. ;
Pircher, M. ;
Baumann, B. ;
Hirn, C. ;
Vass, C. ;
Hitzenberger, C. K. .
JOURNAL OF BIOPHOTONICS, 2008, 1 (02) :129-139
[13]   Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography [J].
Goetzinger, Erich ;
Pircher, Michael ;
Geitzenauer, Wolfgang ;
Ahlers, Christian ;
Baumann, Bernhard ;
Michels, Stephan ;
Schmidt-Erfurth, Ursula ;
Hitzenberger, Christoph K. .
OPTICS EXPRESS, 2008, 16 (21) :16410-16422
[14]   High speed spectral domain polarization sensitive optical coherence tomography of the human retina [J].
Götzinger, E ;
Pircher, M ;
Hitzenberger, CK .
OPTICS EXPRESS, 2005, 13 (25) :10217-10229
[15]   High speed full range complex spectral domain optical coherence tomography [J].
Götzinger, E ;
Pircher, M ;
Leitgeb, RA ;
Hitzenberger, CK .
OPTICS EXPRESS, 2005, 13 (02) :583-594
[16]   EFFECT OF FOCUS ON VISUAL RESPONSE TO A SINUSOIDALLY MODULATED SPATIAL STIMULUS [J].
GREEN, DG ;
CAMPBELL, FW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1965, 55 (09) :1154-&
[17]   Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography [J].
Hitzenberger, CK ;
Götzinger, E ;
Sticker, M ;
Pircher, M ;
Fercher, AF .
OPTICS EXPRESS, 2001, 9 (13) :780-790
[18]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[19]   Microtubules contribute to the birefringence of the retinal nerve fiber layer [J].
Huang, XR ;
Knighton, RW .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (12) :4588-4593
[20]   Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects [J].
Huang, XR ;
Bagga, H ;
Greenfield, DS ;
Knighton, RW .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 (09) :3073-3080