Detecting dynamical change in nonlinear time series

被引:35
作者
Hively, LM [1 ]
Gailey, PC [1 ]
Protopopescu, VA [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国能源部;
关键词
D O I
10.1016/S0375-9601(99)00342-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a robust, model-independent technique for measuring changes in the dynamics underlying nonlinear time-serial data. After constructing discrete density distributions of phase-space points on the attractor for time-windowed data sets, we measure the dissimilarity between density distributions via L-1-distance and chi(2) statistics. The discriminating power of the new measures is first tested on the Lorenz model and then applied to EEG data to detect the transition between non-seizure and epileptic activity. We find a clear superiority of the new measures in comparison to traditional nonlinear measures as discriminators of changing dynamics. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 32 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[3]   LOCAL FALSE NEAREST NEIGHBORS AND DYNAMIC DIMENSIONS FROM OBSERVED CHAOTIC DATA [J].
ABARBANEL, HDI ;
KENNEL, MB .
PHYSICAL REVIEW E, 1993, 47 (05) :3057-3068
[4]  
[Anonymous], 1974, Introduction to the Theory of Statistics
[5]   Practical method for determining the minimum embedding dimension of a scalar time series [J].
Cao, LY .
PHYSICA D, 1997, 110 (1-2) :43-50
[6]   RKH space methods for low level monitoring and control of nonlinear systems .2. A vector-case example: The Lorenz system [J].
Cover, A ;
Reneke, J ;
Lenhart, S ;
Protopopescu, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1997, 7 (06) :823-845
[7]   Detecting differences between delay vector distributions [J].
Diks, C ;
vanZwet, WR ;
Takens, F ;
DeGoede, J .
PHYSICAL REVIEW E, 1996, 53 (03) :2169-2176
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]   CHAOS AND PHYSIOLOGY - DETERMINISTIC CHAOS IN EXCITABLE CELL ASSEMBLIES [J].
ELBERT, T ;
RAY, WJ ;
KOWALIK, ZJ ;
SKINNER, JE ;
GRAF, KE ;
BIRBAUMER, N .
PHYSIOLOGICAL REVIEWS, 1994, 74 (01) :1-47
[10]  
ELLIOTT DF, 1982, FAST TRANSFORMS ANAL