Nickel deposition on porous silicon utilizing lasers

被引:15
作者
Kordás, K
Leppävuori, S
Békési, J
Nánai, L
Remes, J
Vajtai, R
Szatmári, S
机构
[1] Univ Oulu, Microelect Lab, FIN-90570 Oulu, Finland
[2] Univ Oulu, Phys Mat Lab, FIN-90570 Oulu, Finland
[3] Univ Oulu, EMPART Res Grp Infotech Oulu, FIN-90570 Oulu, Finland
[4] Laser Lab Gottingen, D-37077 Gottingen, Germany
[5] Univ Szeged, JGYTF, Dept Phys, H-6720 Szeged, Hungary
[6] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[7] Univ Szeged, Dept Expt Phys, H-6720 Szeged, Hungary
关键词
porous silicon; metallization; laser processing; photoelectric effect; semiconductors;
D O I
10.1016/S0169-4332(01)00636-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin metallic nickel deposits on porous silicon (PS) surfaces from electroless nickel plating bath have been obtained by the laser-induced photochemical metallization method. Lasers such as XeCl (lambda = 308 nm, tau similar to 15 ns), KrF (lambda = 248 nm, tau similar to 500 fs), Ti:sapphire (lambda = 745.5 nm, tau similar to 120 fs) and Q-switched Nd:YAG (lambda = 1064 nm. tau similar to 150 ns) were utilized in order to achieve direct deposition of Ni. Depending on the laser parameters, the thickness of the deposits varies from a few up to several tens of nanometers when excimer pulses are applied. Investigations using Ti:sapphire and Q-switched Nd:YAG have failed: however, no Ni deposition occurred. The high lateral resolution of the patterns (<5 mum) makes the fabricated metal structures suitable for direct applications (i.e. electrical contacts, mechanical structures as well as contact masks). The deposits were analyzed using SEM, EDX and resistance measurements. FIB and profilometry were involved to characterize the cross-section of the formed metal layers. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:232 / 236
页数:5
相关论文
共 15 条
[1]   Gold-catalysed porous silicon for NOx sensing [J].
Baratto, C ;
Sberveglieri, G ;
Comini, E ;
Faglia, G ;
Benussi, G ;
La Ferrara, V ;
Quercia, L ;
Di Francia, G ;
Guidi, V ;
Vincenzi, D ;
Boscarino, D ;
Rigato, V .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 68 (1-3) :74-80
[2]   Porous silicon: a quantum sponge structure for silicon based optoelectronics [J].
Bisi, O ;
Ossicini, S ;
Pavesi, L .
SURFACE SCIENCE REPORTS, 2000, 38 (1-3) :1-126
[3]   Morphology of porous silicon layers: image of active sites from reductive deposition of copper onto the surface [J].
Coulthard, I ;
Sham, TK .
APPLIED SURFACE SCIENCE, 1998, 126 (3-4) :287-291
[4]   The structural and luminescence properties of porous silicon [J].
Cullis, AG ;
Canham, LT ;
Calcott, PDJ .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) :909-965
[5]  
Dhar S, 1996, APPL PHYS LETT, V68, P1392, DOI 10.1063/1.116090
[6]   Electroless Ni plating on n- and p-type porous Si for ohmic and rectifying contacts [J].
Dhar, S ;
Chakrabarti, S .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (08) :1231-1234
[7]   Patterned metallization of porous silicon from electroless solution for direct electrical contact [J].
Gole, JL ;
Seals, LT ;
Lillehei, PT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (10) :3785-3789
[8]   ELECTRODEPOSITION OF METALS INTO POROUS SILICON [J].
JESKE, M ;
SCHULTZE, JW ;
THONISSEN, M ;
MUNDER, H .
THIN SOLID FILMS, 1995, 255 (1-2) :63-66
[9]   Laser-assisted selective deposition of nickel patterns on porous silicon substrates [J].
Kordás, K ;
Remes, J ;
Leppävuori, S ;
Nánai, L .
APPLIED SURFACE SCIENCE, 2001, 178 (1-4) :93-97
[10]   Enhanced enzyme activity in silicon integrated enzyme reactors utilizing porous silicon as the coupling matrix [J].
Laurell, T ;
Drott, J ;
Rosengren, L ;
Lindstrom, K .
SENSORS AND ACTUATORS B-CHEMICAL, 1996, 31 (03) :161-166