A Monolithic CMOS Microhotplate-Based Gas Sensor System

被引:130
作者
Afridi, Muhammad Y. [1 ]
Suehle, John S. [1 ]
Zaghloul, Mona E. [2 ]
Berning, David W. [1 ]
Hefner, Allen R. [1 ]
Cavicchi, Richard E. [3 ]
Semancik, Steve [3 ]
Montgomery, Christopher B. [3 ]
Taylor, Charles J. [4 ]
机构
[1] NIST, Div Semicond Elect, Gaithersburg, MD 20899 USA
[2] George Washington Univ, Elect & Comp Engn Dept, Washington, DC 20052 USA
[3] NIST, Proc Measurements Div, Gaithersburg, MD 20899 USA
[4] Pomona Coll, Seaver Chem Lab, Claremont, CA 91711 USA
关键词
D O I
10.1109/JSEN.2002.807780
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A monolithic CMOS microhotplate-based conductance-type gas sensor system is described. A bulk micromachining technique is used to create suspended microhotplate structures that serve as sensing film platforms. The thermal properties of the microhotplates include a 1-ms thermal time constant and a 10 degrees C/mW thermal efficiency. The polysilicon used for the microhotplate heater exhibits a temperature coefficient of resistance of 1.067 x 10(-3)/degrees C. Tin(IV) oxide and titanium(IV) oxide (SnO2, TiO2) sensing films are grown over postpatterned gold sensing electrodes on the microhotplate using low-pressure chemical vapor deposition (LPCVD). An array of microhotplate gas sensors with different sensing film properties is fabricated by using a different temperature for each microhotplate during the LPCVD film growth process. Interface circuits are designed and implemented monolithically with the array of microhotplate gas sensors. Bipolar transistors are found to be a good choice for the heater drivers, and MOSFET switches are suitable for addressing the sensing films. An on-chip operational amplifier improves the signal-to-noise ratio and produces a robust output signal. Isothermal responses demonstrate the ability of the sensors to detect different gas molecules over a wide range of concentrations including detection below 100 nanomoles/mole.
引用
收藏
页码:644 / 655
页数:12
相关论文
共 14 条
[1]   Transient heating study of microhotplates by using a high-speed thermal imaging system [J].
Afridi, M ;
Berning, D ;
Hefner, A ;
Suehle, J ;
Zaghloul, M ;
Kelley, E ;
Parrilla, Z ;
Ellenwood, C .
EIGHTEENTH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM, PROCEEDINGS 2002, 2002, :92-98
[2]  
Afridi MY, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, P732
[3]  
Baker R. J., 1998, CMOS CIRCUIT DESIGN, P617
[4]  
Barrettino D, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, P157
[5]   CHARACTERISTICS OF SEMICONDUCTOR GAS SENSORS .2. TRANSIENT-RESPONSE TO TEMPERATURE-CHANGE [J].
CLIFFORD, PK ;
TUMA, DT .
SENSORS AND ACTUATORS, 1983, 3 (03) :255-281
[6]   AN INTEGRATED LOW-POWER THIN-FILM CO GAS SENSOR ON SILICON [J].
DEMARNE, V ;
GRISEL, A .
SENSORS AND ACTUATORS, 1988, 13 (04) :301-313
[7]  
GAITAN M, 1994, Patent No. 5464966
[8]   A high-speed thermal imaging system for semiconductor device analysis [J].
Hefner, A ;
Berning, D ;
Blackburn, D ;
Chapuy, C ;
Bouché, S .
SEVENTEENTH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM, PROCEEDINGS 2001, 2001, :43-49
[9]   THERMOELECTRIC AC POWER SENSOR BY CMOS TECHNOLOGY [J].
JAEGGI, D ;
BALTES, H ;
MOSER, D .
IEEE ELECTRON DEVICE LETTERS, 1992, 13 (07) :366-368
[10]  
Moser D., P TRANSD 91, P547