Quantum resistance metrology using graphene

被引:58
作者
Janssen, T. J. B. M. [1 ]
Tzalenchuk, A. [1 ,2 ]
Lara-Avila, S. [3 ]
Kubatkin, S. [3 ]
Fal'ko, V. I. [4 ]
机构
[1] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[2] Univ London, Egham TW20 0EX, Surrey, England
[3] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[4] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
基金
瑞典研究理事会; 英国工程与自然科学研究理事会;
关键词
QUANTIZED HALL RESISTANCE; ELECTRON-GAS; CAPACITANCE; CONSTANTS; STANDARDS; TRANSPORT; GRAPHITE; AMPERE; DEVICE;
D O I
10.1088/0034-4885/76/10/104501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we review the recent extraordinary progress in the development of a new quantum standard for resistance based on graphene. We discuss the unique properties of this material system relating to resistance metrology and discuss results of the recent highest-ever precision direct comparison of the Hall resistance between graphene and traditional GaAs. We mainly focus our review on graphene expitaxially grown on SiC, a system which so far resulted in the best results. We also briefly discuss progress in the two other graphene material systems, exfoliated graphene and chemical vapour deposition graphene, and make a critical comparison with SiC graphene. Finally, we discuss other possible applications of graphene in metrology.
引用
收藏
页数:24
相关论文
共 111 条
[1]   Quantized transport in graphene p-n junctions in a magnetic field [J].
Abanin, D. A. ;
Levitov, L. S. .
SCIENCE, 2007, 317 (5838) :641-643
[2]   Nonadiabatic charge pumping in a hybrid single-electron transistor [J].
Averin, Dmitri V. ;
Pekola, Jukka P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[3]   Determination of the unit of resistance and the von Klitzing constant Rk based on a calculable capacitor [J].
Bachmair, H. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 172 :257-266
[4]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[5]   Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
McMullan, S. D. ;
Janssen, T. J. B. M. ;
Tzalenchuk, A. ;
Lara-Avila, S. ;
Kubatkin, S. ;
Yakimova, R. ;
Lin, C. -T. ;
Li, L. -J. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2013, 87 (04)
[6]   Weak localization scattering lengths in epitaxial, and CVD graphene [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
Janssen, T. J. B. M. ;
Tzalenchuk, A. ;
Lara-Avila, S. ;
Kubatkin, S. ;
Yakimova, R. ;
Lin, C. -T. ;
Li, L. -J. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2012, 86 (23)
[7]   Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene [J].
Bennaceur, K. ;
Jacques, P. ;
Portier, F. ;
Roche, P. ;
Glattli, D. C. .
PHYSICAL REVIEW B, 2012, 86 (08)
[8]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[9]   Hot Electron Cooling by Acoustic Phonons in Graphene [J].
Betz, A. C. ;
Vialla, F. ;
Brunel, D. ;
Voisin, C. ;
Picher, M. ;
Cavanna, A. ;
Madouri, A. ;
Feve, G. ;
Berroir, J. -M. ;
Placais, B. ;
Pallecchi, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[10]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493