Hot Electron Cooling by Acoustic Phonons in Graphene

被引:125
作者
Betz, A. C. [1 ,2 ]
Vialla, F. [1 ,2 ]
Brunel, D. [1 ,2 ]
Voisin, C. [1 ,2 ]
Picher, M. [3 ]
Cavanna, A. [3 ]
Madouri, A. [3 ]
Feve, G. [1 ,2 ]
Berroir, J. -M. [1 ,2 ]
Placais, B. [1 ,2 ]
Pallecchi, E. [1 ,2 ]
机构
[1] Univ Paris 06, ENS CNRS, UMR 8551, Lab Pierre Aigrain, F-75231 Paris 05, France
[2] Univ Paris Diderot, F-75231 Paris 05, France
[3] CNRS, UPR20, Lab Photon & Nanostruct, F-91460 Marcoussis, France
关键词
SHOT-NOISE;
D O I
10.1103/PhysRevLett.109.056805
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T proportional to V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T proportional to root V behavior at high bias, which corresponds to a T-4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Sigma in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Sigma, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.
引用
收藏
页数:5
相关论文
共 35 条
[1]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[2]   Transport Properties of Graphene in the High-Current Limit [J].
Barreiro, Amelia ;
Lazzeri, Michele ;
Moser, Joel ;
Mauri, Francesco ;
Bachtold, Adrian .
PHYSICAL REVIEW LETTERS, 2009, 103 (07)
[3]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[4]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[5]   Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices [J].
Calizo, I. ;
Miao, F. ;
Bao, W. ;
Lau, C. N. ;
Balandin, A. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (07)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Thermal shot noise in top-gated single carbon nanotube field effect transistors [J].
Chaste, J. ;
Pallecchi, E. ;
Morfin, P. ;
Feve, G. ;
Kontos, T. ;
Berroir, J. -M. ;
Hakonen, P. ;
Placais, B. .
APPLIED PHYSICS LETTERS, 2010, 96 (19)
[8]   Shot noise suppression and hopping conduction in graphene nanoribbons [J].
Danneau, R. ;
Wu, F. ;
Tomi, M. Y. ;
Oostinga, J. B. ;
Morpurgo, A. F. ;
Hakonen, P. J. .
PHYSICAL REVIEW B, 2010, 82 (16)
[9]  
Das Sarma S., ARXIV10034731V1
[10]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726