Weak localization scattering lengths in epitaxial, and CVD graphene

被引:61
作者
Baker, A. M. R. [1 ]
Alexander-Webber, J. A. [1 ]
Altebaeumer, T. [1 ]
Janssen, T. J. B. M. [2 ]
Tzalenchuk, A. [2 ]
Lara-Avila, S. [3 ]
Kubatkin, S. [3 ]
Yakimova, R. [4 ]
Lin, C. -T. [5 ]
Li, L. -J. [5 ]
Nicholas, R. J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[3] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[4] Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden
[5] Acad Sinica, Inst Atom & Mol Sci, Taipei 11617, Taiwan
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
ELECTRONIC-PROPERTIES;
D O I
10.1103/PhysRevB.86.235441
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Weak localization in graphene is studied as a function of carrier density in the range from 1 x 10(11) cm(-2) to 1.43 x 10(13) cm(-2) using devices produced by epitaxial growth onto SiC and CVD growth on thin metal film. The magnetic field dependent weak localization is found to be well fitted by theory, which is then used to analyze the dependence of the scattering lengths L-phi, L-i, and L-* on carrier density. We find no significant carrier dependence for L-phi, a weak decrease for L-i with increasing carrier density just beyond a large standard error, and a n(-1/4) dependence for L-*. We demonstrate that currents as low as 0.01 nA are required in smaller devices to avoid hot-electron artifacts in measurements of the quantum corrections to conductivity. DOI: 10.1103/PhysRevB.86.235441
引用
收藏
页数:5
相关论文
共 28 条
[1]   Energy relaxation for hot Dirac fermions in graphene and breakdown of the quantum Hall effect [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2012, 85 (11)
[2]  
Baker A. M. R., 2003, ARXIV12124903CONDMAT
[3]   Hot Electron Cooling by Acoustic Phonons in Graphene [J].
Betz, A. C. ;
Vialla, F. ;
Brunel, D. ;
Voisin, C. ;
Picher, M. ;
Cavanna, A. ;
Madouri, A. ;
Feve, G. ;
Berroir, J. -M. ;
Placais, B. ;
Pallecchi, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[4]   ELECTRONICS Back to analogue [J].
Bourzac, Katherine .
NATURE, 2012, 483 (7389) :S34-S36
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Electrical Probing of Submicroliter Liquid Using Graphene Strip Transistors Built on a Nanopipette [J].
Chen, Chang-Hsiao ;
Lin, Cheng-Te ;
Lee, Yi-Hsien ;
Liu, Keng-Ku ;
Su, Ching-Yuan ;
Zhang, Wenjing ;
Li, Lain-Jong .
SMALL, 2012, 8 (01) :43-46
[7]   Cyclotron resonance study of the electron and hole velocity in graphene monolayers [J].
Deacon, R. S. ;
Chuang, K.-C. ;
Nicholas, R. J. ;
Novoselov, K. S. ;
Geim, A. K. .
PHYSICAL REVIEW B, 2007, 76 (08)
[8]   Weak localization in graphene [J].
Fal'ko, Vladimir I. ;
Kechedzhi, K. ;
McCann, E. ;
Altshuler, B. L. ;
Suzuura, H. ;
Ando, T. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :33-38
[9]  
Fong KC, 2012, PHYS REV X, V2, DOI 10.1103/PhysRevX.2.031006
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191