Energy relaxation for hot Dirac fermions in graphene and breakdown of the quantum Hall effect

被引:53
作者
Baker, A. M. R. [1 ]
Alexander-Webber, J. A. [1 ]
Altebaeumer, T. [1 ]
Nicholas, R. J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 11期
基金
英国工程与自然科学研究理事会;
关键词
CYCLOTRON PHONON EMISSION; LOSS RATES; RESISTANCE STANDARD; EPITAXIAL GRAPHENE; TRANSPORT; HETEROSTRUCTURES; HETEROJUNCTIONS; DISSIPATION; TRANSISTORS; DEVICES;
D O I
10.1103/PhysRevB.85.115403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Energy loss rates for hot carriers in graphene are experimentally investigated by observing the amplitude of Shubnikov-de Haas oscillations as a function of electric field. The carrier energy loss in graphene follows the predictions of deformation potential coupling going as similar to T-4 at carrier temperatures up to similar to 100 K, and that deformation potential theory, when modified with a limiting phonon relaxation time, is valid up to several hundred Kelvin. Additionally we investigate the breakdown of the quantum Hall effect and show that energy loss rates in graphene are around ten times larger than GaAs at low temperatures. This leads to significantly higher breakdown currents per micrometer, and we report a measured breakdown current of 8 mu A/mu m.
引用
收藏
页数:6
相关论文
共 44 条
[1]   THEORY OF QUANTUM TRANSPORT IN A 2-DIMENSIONAL ELECTRON-SYSTEM UNDER MAGNETIC-FIELDS .4. OSCILLATORY CONDUCTIVITY [J].
ANDO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (05) :1233-1237
[2]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[3]   Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point [J].
Blake, P. ;
Yang, R. ;
Morozov, S. V. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Zhukov, A. A. ;
Nair, R. R. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Geim, A. K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1068-1071
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[6]   Ultrafast Carrier Dynamics in Graphite [J].
Breusing, Markus ;
Ropers, Claus ;
Elsaesser, Thomas .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[7]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[8]   Phonon emission from a 2D electron gas: Evidence of transition to the hydrodynamic regime [J].
Chow, E ;
Wei, HP ;
Girvin, SM ;
Shayegan, M .
PHYSICAL REVIEW LETTERS, 1996, 77 (06) :1143-1146
[9]   Mechanism for Current Saturation and Energy Dissipation in Graphene Transistors [J].
DaSilva, Ashley M. ;
Zou, Ke ;
Jain, J. K. ;
Zhu, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[10]   Measurement of ultrafast carrier dynamics in epitaxial graphene [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)