Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point

被引:159
作者
Blake, P. [1 ]
Yang, R. [1 ]
Morozov, S. V. [1 ,2 ]
Schedin, F. [1 ]
Ponomarenko, L. A. [1 ]
Zhukov, A. A. [1 ]
Nair, R. R. [1 ]
Grigorieva, I. V. [1 ]
Novoselov, K. S. [1 ]
Geim, A. K. [1 ]
机构
[1] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[2] Russian Acad Sci, Inst Microelect Technol, Chernogolovka 142432, Russia
基金
英国工程与自然科学研究理事会;
关键词
Graphene; Transport properties; Contact phenomena; Doping; TRANSISTOR; SCATTERING; GAS;
D O I
10.1016/j.ssc.2009.02.039
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
There is an increasing amount of literature concerning electronic properties of graphene close to the neutrality point. Many experiments continue using the two-probe geometry or invasive contacts or do not control samples' macroscopic homogeneity. We believe that it is helpful to point out some problems related to such measurements. By using experimental examples, we illustrate that the charge inhomogeneity induced by spurious chemical doping or metal contacts can lead to large systematic errors in assessing graphene's transport properties and, in particular, its minimal conductivity. The problems are most severe in the case of two-probe measurements where the contact resistance is found to strongly vary as a function of gate voltage. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1068 / 1071
页数:4
相关论文
共 35 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Random resistor network model of minimal conductivity in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. ;
Altshuler, Boris L. ;
Aleiner, Igor L. .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[5]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]  
FOGLER MM, ARXIV08101755, P16804
[8]   Statistics of random voltage fluctuations and the low-density residual conductivity of graphene [J].
Galitski, Victor M. ;
Adam, Shaffique ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2007, 76 (24)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)