Light Trapping in Solar Cells: Can Periodic Beat Random?

被引:413
作者
Battaglia, Corsin [1 ]
Hsu, Ching-Mei [2 ]
Soederstroem, Karin [1 ]
Escarre, Jordi [1 ]
Haug, Franz-Josef [1 ]
Charriere, Mathieu [1 ]
Boccard, Mathieu [1 ]
Despeisse, Matthieu [1 ]
Alexander, Duncan T. L. [3 ]
Cantoni, Marco [3 ]
Cui, Yi [2 ]
Ballif, Christophe [1 ]
机构
[1] EPFL, Photovolta & Thin Film Elect Lab, Inst Microengn IMT, CH-2000 Neuchatel, Switzerland
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Ecole Polytech Fed Lausanne, CIME, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
photovoltaics; solar cells; light trapping; guided modes; Yablonovitch limit; amorphous silicon; nanoimprint lithography; nanosphere lithography; SILVER BACK REFLECTOR; FUNDAMENTAL LIMIT; ABSORPTION; ARRAYS;
D O I
10.1021/nn300287j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on the random pyramidal morphology of transparent zinc oxide electrodes. Based on insights from waveguide theory, we develop tailored periodic arrays of nanocavities on glass fabricated by nanosphere lithography, which enable a cell with a remarkable short-circuit current density of 17.1 mA/cm(2) and a high initial efficiency of 10.9%. A direct comparison with a cell deposited on the random pyramidal morphology of state-of-the-art zinc oxide electrodes, replicated onto glass using nanoimprint lithography, demonstrates unambiguously that periodic structures rival random textures.
引用
收藏
页码:2790 / 2797
页数:8
相关论文
共 47 条
[1]  
[Anonymous], P 24 EUR PHOT SOL EN
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[3]  
Bailat J, 2006, WORL CON PHOTOVOLT E, P1533
[4]  
Battaglia C., 2012, ENERGY PROC IN PRESS
[5]  
Battaglia C, 2011, NAT PHOTONICS, V5, P535, DOI [10.1038/nphoton.2011.198, 10.1038/NPHOTON.2011.198]
[6]   Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes [J].
Battaglia, Corsin ;
Erni, Lukas ;
Boccard, Mathieu ;
Barraud, Loris ;
Escarre, Jordi ;
Soederstroem, Karin ;
Bugnon, Gregory ;
Billet, Adrian ;
Ding, Laura ;
Despeisse, Matthieu ;
Haug, Franz-Josef ;
De Wolf, Stefaan ;
Ballif, Christophe .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (11)
[7]   Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells [J].
Battaglia, Corsin ;
Escarre, Jordi ;
Soederstroem, Karin ;
Erni, Lukas ;
Ding, Laura ;
Bugnon, Gregory ;
Billet, Adrian ;
Boccard, Mathieu ;
Barraud, Loris ;
De Wolf, Stefaan ;
Haug, Franz-Josef ;
Despeisse, Matthieu ;
Ballif, Christophe .
NANO LETTERS, 2011, 11 (02) :661-665
[8]   Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting [J].
Battaglia, Corsin ;
Soederstroem, Karin ;
Escarre, Jordi ;
Haug, Franz-Josef ;
Domine, Didier ;
Cuony, Peter ;
Boccard, Mathieu ;
Bugnon, Gregory ;
Denizot, Celine ;
Despeisse, Matthieu ;
Feltrin, Andrea ;
Ballif, Christophe .
APPLIED PHYSICS LETTERS, 2010, 96 (21)
[9]   A photonic-plasmonic structure for enhancing light absorption in thin film solar cells [J].
Bhattacharya, Joydeep ;
Chakravarty, Nayan ;
Pattnaik, Sambit ;
Slafer, W. Dennis ;
Biswas, Rana ;
Dalal, Vikram L. .
APPLIED PHYSICS LETTERS, 2011, 99 (13)
[10]   PREPARATION OF MONODISPERSE SILICA PARTICLES - CONTROL OF SIZE AND MASS FRACTION [J].
BOGUSH, GH ;
TRACY, MA ;
ZUKOSKI, CF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1988, 104 (01) :95-106